Monitoring Mining-Induced Geo-Hazards in a Contaminated Mountainous Region of Indonesia Using Satellite Imagery

Mining-induced or enhanced geo-hazards (MGHs) pose significant risks in rural mountainous regions with underground mining operations by harming groundwater layers, water circulation systems, and mountain stability. MGHs occurring in naturally contaminated environments can severely amplify socio-envi...

Full description

Bibliographic Details
Main Authors: Satomi Kimijima, Masahiko Nagai
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/13/3436
Description
Summary:Mining-induced or enhanced geo-hazards (MGHs) pose significant risks in rural mountainous regions with underground mining operations by harming groundwater layers, water circulation systems, and mountain stability. MGHs occurring in naturally contaminated environments can severely amplify socio-environmental risks. A high correlation was found among undermining development, precipitation, and hazards; however, details of MGHs have yet to be adequately characterized. This study investigated multiple mining-induced/enhanced geo-hazards in a naturally contaminated mountain region in Bone Bolango Regency, Gorontalo Province, Indonesia, in 2020, where a rapidly developing coexisting mining sector was present. We utilized PlanetScope’s CubeSat constellations and Sentinel-1 dataset to assess the volume, distribution, pace, and pattern of MGHs. The findings reveal that severe landslides and floods accelerated the mobilization of potentially toxic elements (PTEs) via the river water system, thus considerably exacerbating socio-environmental risks. These results indicate potential dangers of enhanced PTE contamination for marine ecosystems and humans at a regional level. The study design and data used facilitated a comprehensive assessment of the MGHs and associated risks, providing important information for decision-makers and stakeholders. However, limitations in the methodology should be considered when interpreting the findings. The societal benefits of this study include informing policies and practices that aim to mitigate the negative impacts of mining activities on the environment and society at the local and regional levels.
ISSN:2072-4292