EEG analysis – automatic spike detection

In the diagnosis and treatment of epilepsy, an electroencephalography (EEG) is one of the main tools. However visual inspection of EEG is very time consuming. Automatic extraction of important EEG features saves not only a lot of time for neurologist, but also enables a whole new level for EEG analy...

Full description

Bibliographic Details
Main Authors: Algimantas Juozapavičius, Gytis Bacevičius, Dmitrijus Bugelskis, Rūta Samaitienė
Format: Article
Language:English
Published: Vilnius University Press 2012-01-01
Series:Nonlinear Analysis
Subjects:
Online Access:http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14083
_version_ 1818759588945592320
author Algimantas Juozapavičius
Gytis Bacevičius
Dmitrijus Bugelskis
Rūta Samaitienė
author_facet Algimantas Juozapavičius
Gytis Bacevičius
Dmitrijus Bugelskis
Rūta Samaitienė
author_sort Algimantas Juozapavičius
collection DOAJ
description In the diagnosis and treatment of epilepsy, an electroencephalography (EEG) is one of the main tools. However visual inspection of EEG is very time consuming. Automatic extraction of important EEG features saves not only a lot of time for neurologist, but also enables a whole new level for EEG analysis, by using data mining methods. In this work we present and analyse methods to extract some of these features of EEG – drowsiness score and centrotemporal spikes. For spike detection, a method based on morphological filters is used. Also a database design is proposed in order to allow easy EEG analysis and provide data accessibility for data mining algorithms developed in the future.
first_indexed 2024-12-18T06:45:07Z
format Article
id doaj.art-c9a565b547e743c58fc68a00e47710bc
institution Directory Open Access Journal
issn 1392-5113
2335-8963
language English
last_indexed 2024-12-18T06:45:07Z
publishDate 2012-01-01
publisher Vilnius University Press
record_format Article
series Nonlinear Analysis
spelling doaj.art-c9a565b547e743c58fc68a00e47710bc2022-12-21T21:17:32ZengVilnius University PressNonlinear Analysis1392-51132335-89632012-01-01164EEG analysis – automatic spike detectionAlgimantas Juozapavičius0Gytis Bacevičius1Dmitrijus Bugelskis2Rūta Samaitienė3Vilnius University, LithuaniaVilnius University, LithuaniaVilnius University, LithuaniaVilnius University, LithuaniaIn the diagnosis and treatment of epilepsy, an electroencephalography (EEG) is one of the main tools. However visual inspection of EEG is very time consuming. Automatic extraction of important EEG features saves not only a lot of time for neurologist, but also enables a whole new level for EEG analysis, by using data mining methods. In this work we present and analyse methods to extract some of these features of EEG – drowsiness score and centrotemporal spikes. For spike detection, a method based on morphological filters is used. Also a database design is proposed in order to allow easy EEG analysis and provide data accessibility for data mining algorithms developed in the future.http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14083electroencephalogramrolandic epilepsyepileptic spikesmorphological filtersanalysis
spellingShingle Algimantas Juozapavičius
Gytis Bacevičius
Dmitrijus Bugelskis
Rūta Samaitienė
EEG analysis – automatic spike detection
Nonlinear Analysis
electroencephalogram
rolandic epilepsy
epileptic spikes
morphological filters
analysis
title EEG analysis – automatic spike detection
title_full EEG analysis – automatic spike detection
title_fullStr EEG analysis – automatic spike detection
title_full_unstemmed EEG analysis – automatic spike detection
title_short EEG analysis – automatic spike detection
title_sort eeg analysis automatic spike detection
topic electroencephalogram
rolandic epilepsy
epileptic spikes
morphological filters
analysis
url http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14083
work_keys_str_mv AT algimantasjuozapavicius eeganalysisautomaticspikedetection
AT gytisbacevicius eeganalysisautomaticspikedetection
AT dmitrijusbugelskis eeganalysisautomaticspikedetection
AT rutasamaitiene eeganalysisautomaticspikedetection