Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and Control

Successful control of a dielectric elastomer actuator (DEA) can be a challenging task, especially if no overshoot is desired. The work presents the first use of the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I...

Full description

Bibliographic Details
Main Authors: Timi Karner, Janez Gotlih
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/10/1/18
_version_ 1797409837417496576
author Timi Karner
Janez Gotlih
author_facet Timi Karner
Janez Gotlih
author_sort Timi Karner
collection DOAJ
description Successful control of a dielectric elastomer actuator (DEA) can be a challenging task, especially if no overshoot is desired. The work presents the first use of the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> control for a dielectric elastomer actuator to eliminate the overshoot. The mathematical model of the dielectric elastomer was established using the fractional Kelvin-Voigt model. Step responses are first tested in the Laplace domain, which gave the most satisfactory results. However, they did not represent the real model. It cannot have negative force acting on the dielectric elastomer actuator. Simulations in Matlab/Simulink were performed to obtain more realistic responses, where output of the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> controller was limited. Initial parameters for a PID control were obtained by the Wang–Juang–Chan algorithm for the first order plus death time function approximation to the step response of the model, and reused as the basis for the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> actuator control. A quasi-anti-windup method was introduced to the final control algorithm. Step responses of the PID and the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> in different domains were verified by simulation and validated by experiments. Experiments proved that the fractional calculus <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> step responses exceeded performance of the basic PID controller for DEA in terms of response time, settling time, and overshoot elimination.
first_indexed 2024-03-09T04:20:23Z
format Article
id doaj.art-c9a87d5d1f4041739e96fc9961a6957b
institution Directory Open Access Journal
issn 2076-0825
language English
last_indexed 2024-03-09T04:20:23Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Actuators
spelling doaj.art-c9a87d5d1f4041739e96fc9961a6957b2023-12-03T13:48:40ZengMDPI AGActuators2076-08252021-01-011011810.3390/act10010018Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and ControlTimi Karner0Janez Gotlih1Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, SloveniaFaculty of Mechanical Engineering, University of Maribor, 2000 Maribor, SloveniaSuccessful control of a dielectric elastomer actuator (DEA) can be a challenging task, especially if no overshoot is desired. The work presents the first use of the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> control for a dielectric elastomer actuator to eliminate the overshoot. The mathematical model of the dielectric elastomer was established using the fractional Kelvin-Voigt model. Step responses are first tested in the Laplace domain, which gave the most satisfactory results. However, they did not represent the real model. It cannot have negative force acting on the dielectric elastomer actuator. Simulations in Matlab/Simulink were performed to obtain more realistic responses, where output of the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> controller was limited. Initial parameters for a PID control were obtained by the Wang–Juang–Chan algorithm for the first order plus death time function approximation to the step response of the model, and reused as the basis for the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> actuator control. A quasi-anti-windup method was introduced to the final control algorithm. Step responses of the PID and the <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> in different domains were verified by simulation and validated by experiments. Experiments proved that the fractional calculus <inline-formula><math display="inline"><semantics><mrow><mi>P</mi><msup><mi>I</mi><mi>λ</mi></msup><msup><mi>D</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> step responses exceeded performance of the basic PID controller for DEA in terms of response time, settling time, and overshoot elimination.https://www.mdpi.com/2076-0825/10/1/18dielectric elastomer actuatorfractional calculusfractional Kelvin-Voigtfractional calculus controlfractional PIDanti-windup
spellingShingle Timi Karner
Janez Gotlih
Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and Control
Actuators
dielectric elastomer actuator
fractional calculus
fractional Kelvin-Voigt
fractional calculus control
fractional PID
anti-windup
title Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and Control
title_full Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and Control
title_fullStr Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and Control
title_full_unstemmed Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and Control
title_short Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and Control
title_sort position control of the dielectric elastomer actuator based on fractional derivatives in modelling and control
topic dielectric elastomer actuator
fractional calculus
fractional Kelvin-Voigt
fractional calculus control
fractional PID
anti-windup
url https://www.mdpi.com/2076-0825/10/1/18
work_keys_str_mv AT timikarner positioncontrolofthedielectricelastomeractuatorbasedonfractionalderivativesinmodellingandcontrol
AT janezgotlih positioncontrolofthedielectricelastomeractuatorbasedonfractionalderivativesinmodellingandcontrol