Towards Bright Single-Photon Emission in Elliptical Micropillars

In recent years, single-photon sources (SPSs) based on the emission of a single semiconductor quantum dot (QD) have been actively developed. While the purity and indistinguishability of single photons are already close to ideal values, the high brightness of SPSs remains a challenge. The widely used...

Full description

Bibliographic Details
Main Authors: Aidar Galimov, Michail Bobrov, Maxim Rakhlin, Yuriy Serov, Dmitrii Kazanov, Alexey Veretennikov, Grigory Klimko, Sergey Sorokin, Irina Sedova, Nikolai Maleev, Yuriy Zadiranov, Marina Kulagina, Yulia Guseva, Daryia Berezina, Ekaterina Nikitina, Alexey Toropov
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/13/9/1572
Description
Summary:In recent years, single-photon sources (SPSs) based on the emission of a single semiconductor quantum dot (QD) have been actively developed. While the purity and indistinguishability of single photons are already close to ideal values, the high brightness of SPSs remains a challenge. The widely used resonant excitation with cross-polarization filtering usually leads to at least a two-fold reduction in the single-photon counts rate, since single-photon emission is usually unpolarized, or its polarization state is close to that of the exciting laser. One of the solutions is the use of polarization-selective microcavities, which allows one to redirect most of the QD emission to a specific polarization determined by the optical mode of the microcavity. In the present work, elliptical micropillars with distributed Bragg reflectors are investigated theoretically and experimentally as a promising design of such polarization-selective microcavities. The impact of ellipticity, ellipse area and verticality of the side walls on the splitting of the optical fundamental mode is investigated. The study of the near-field pattern allows us to detect the presence of higher-order optical modes, which are classified theoretically. The possibility of obtaining strongly polarized single-photon QD radiation associated with the short-wavelength fundamental cavity mode is shown.
ISSN:2079-4991