Summary: | Resumen: En este trabajo, se presenta una solución al problema del control predictivo basado en modelos, que se distingue por utilizar un modelo neuronal como predictor y un algoritmo genético, especialmente diseñado para ser aplicado en tiempo real, como optimizador. Este enfoque es aplicable al control de procesos fuertemente no lineales que no pueden ser aproximados eficientemente por algún modelo lineal y posibilita, además, el uso de criterios de optimización arbitrarios, no necesariamente cuadráticos y la inclusión de soluciones heurísticas ad hoc para mejorar los resultados. En el trabajo, se presentan algunos ejemplos preliminares del uso del controlador propuesto, obtenidos en régimen de simulación. Palabras clave: Control predictivo, algoritmos genéticos, redes neuronales, control de unidades caldera-turbina
|