3-D generated anatomic custom talar cement spacers: case reports, technical tips and literature review
Abstract Background With today’s expanding use of total ankle arthroplasty, the ever-present trauma patient, and patients with uncontrolled comorbid conditions, surgeons face significant challenges for lower extremity reconstruction. These patients highlight some of those who may present with unique...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-09-01
|
Series: | 3D Printing in Medicine |
Subjects: | |
Online Access: | https://doi.org/10.1186/s41205-021-00117-5 |
_version_ | 1818559739117699072 |
---|---|
author | Kimberly K. Broughton Bonnie Chien Derek Stenquist Caroline Williams Christopher P. Miller John Y. Kwon |
author_facet | Kimberly K. Broughton Bonnie Chien Derek Stenquist Caroline Williams Christopher P. Miller John Y. Kwon |
author_sort | Kimberly K. Broughton |
collection | DOAJ |
description | Abstract Background With today’s expanding use of total ankle arthroplasty, the ever-present trauma patient, and patients with uncontrolled comorbid conditions, surgeons face significant challenges for lower extremity reconstruction. These patients highlight some of those who may present with unique anatomy, bone loss, infection, and various other local and systemic factors that affect treatment options for successful outcomes. Three dimensional (3-D) printing for medical devices is allowing for new and customized ways to meet patient and surgeon goals of limb salvage and reconstruction. Case presentations While the majority of 3-D printing is done for the purpose of implantation, we present a technical tip for designing a 3-D printed mold from which to create an antibiotic cement spacer for implantation. With two case illustrations including a talus fracture nonunion and infected subtalar arthrodesis nonunion, we describe the process of patient selection, implant design, fabrication, and implantation of a custom molded antibiotic cement talus. Discussion Case illustrations present two successful limb salvage patients while giving a thorough explanation of our technique, learned tips and tricks. This applied technology builds on prior use of antibiotic cement in limb salvage of the lower extremity, most of which are joint sacrificing. 3-D printing the mold for an anatomic talus cement spacer results in a joint sparing limb salvage solution. Innovative 3-D printing technology is merged with current, pertinent literature regarding antibiotic cement to offer surgeons expanded options for temporary or definitive reconstructive techniques in some of the most challenging patients. |
first_indexed | 2024-12-14T00:29:27Z |
format | Article |
id | doaj.art-c9c2d3247c5e4bfda02c971f60a3f494 |
institution | Directory Open Access Journal |
issn | 2365-6271 |
language | English |
last_indexed | 2024-12-14T00:29:27Z |
publishDate | 2021-09-01 |
publisher | BMC |
record_format | Article |
series | 3D Printing in Medicine |
spelling | doaj.art-c9c2d3247c5e4bfda02c971f60a3f4942022-12-21T23:24:55ZengBMC3D Printing in Medicine2365-62712021-09-017111010.1186/s41205-021-00117-53-D generated anatomic custom talar cement spacers: case reports, technical tips and literature reviewKimberly K. Broughton0Bonnie Chien1Derek Stenquist2Caroline Williams3Christopher P. Miller4John Y. Kwon5Department of Orthopaedic Surgery, Brigham and Women’s Hospital Brigham and Women’s HospitalHarvard Combined Orthopaedic Residency Program Massachusetts General HospitalHarvard Combined Orthopaedic Residency Program Massachusetts General HospitalDept of Orthopaedic Surgery, Beth Israel Deaconess Medical Center Beth Israel Deaconess Medical CenterDept of Orthopaedic Surgery, Beth Israel Deaconess Medical Center Beth Israel Deaconess Medical CenterDept of Orthopaedic Surgery, Beth Israel Deaconess Medical Center Beth Israel Deaconess Medical CenterAbstract Background With today’s expanding use of total ankle arthroplasty, the ever-present trauma patient, and patients with uncontrolled comorbid conditions, surgeons face significant challenges for lower extremity reconstruction. These patients highlight some of those who may present with unique anatomy, bone loss, infection, and various other local and systemic factors that affect treatment options for successful outcomes. Three dimensional (3-D) printing for medical devices is allowing for new and customized ways to meet patient and surgeon goals of limb salvage and reconstruction. Case presentations While the majority of 3-D printing is done for the purpose of implantation, we present a technical tip for designing a 3-D printed mold from which to create an antibiotic cement spacer for implantation. With two case illustrations including a talus fracture nonunion and infected subtalar arthrodesis nonunion, we describe the process of patient selection, implant design, fabrication, and implantation of a custom molded antibiotic cement talus. Discussion Case illustrations present two successful limb salvage patients while giving a thorough explanation of our technique, learned tips and tricks. This applied technology builds on prior use of antibiotic cement in limb salvage of the lower extremity, most of which are joint sacrificing. 3-D printing the mold for an anatomic talus cement spacer results in a joint sparing limb salvage solution. Innovative 3-D printing technology is merged with current, pertinent literature regarding antibiotic cement to offer surgeons expanded options for temporary or definitive reconstructive techniques in some of the most challenging patients.https://doi.org/10.1186/s41205-021-00117-5Limb salvage3D Talusantibiotic cementtalus arthroplastyinfected nonunion |
spellingShingle | Kimberly K. Broughton Bonnie Chien Derek Stenquist Caroline Williams Christopher P. Miller John Y. Kwon 3-D generated anatomic custom talar cement spacers: case reports, technical tips and literature review 3D Printing in Medicine Limb salvage 3D Talus antibiotic cement talus arthroplasty infected nonunion |
title | 3-D generated anatomic custom talar cement spacers: case reports, technical tips and literature review |
title_full | 3-D generated anatomic custom talar cement spacers: case reports, technical tips and literature review |
title_fullStr | 3-D generated anatomic custom talar cement spacers: case reports, technical tips and literature review |
title_full_unstemmed | 3-D generated anatomic custom talar cement spacers: case reports, technical tips and literature review |
title_short | 3-D generated anatomic custom talar cement spacers: case reports, technical tips and literature review |
title_sort | 3 d generated anatomic custom talar cement spacers case reports technical tips and literature review |
topic | Limb salvage 3D Talus antibiotic cement talus arthroplasty infected nonunion |
url | https://doi.org/10.1186/s41205-021-00117-5 |
work_keys_str_mv | AT kimberlykbroughton 3dgeneratedanatomiccustomtalarcementspacerscasereportstechnicaltipsandliteraturereview AT bonniechien 3dgeneratedanatomiccustomtalarcementspacerscasereportstechnicaltipsandliteraturereview AT derekstenquist 3dgeneratedanatomiccustomtalarcementspacerscasereportstechnicaltipsandliteraturereview AT carolinewilliams 3dgeneratedanatomiccustomtalarcementspacerscasereportstechnicaltipsandliteraturereview AT christopherpmiller 3dgeneratedanatomiccustomtalarcementspacerscasereportstechnicaltipsandliteraturereview AT johnykwon 3dgeneratedanatomiccustomtalarcementspacerscasereportstechnicaltipsandliteraturereview |