Tableaux and plane partitions of truncated shapes (extended abstract)

We consider a new kind of straight and shifted plane partitions/Young tableaux — ones whose diagrams are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right ends. We find formulas for the number of standard tableaux in certain cases, namely a shifted stai...

Full description

Bibliographic Details
Main Author: Greta Panova
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2011-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2950/pdf
Description
Summary:We consider a new kind of straight and shifted plane partitions/Young tableaux — ones whose diagrams are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right ends. We find formulas for the number of standard tableaux in certain cases, namely a shifted staircase without the box in its upper right corner, i.e. truncated by a box, a rectangle truncated by a staircase and a rectangle truncated by a square minus a box. The proofs involve finding the generating function of the corresponding plane partitions using interpretations and formulas for sums of restricted Schur functions and their specializations. The number of standard tableaux is then found as a certain limit of this function.
ISSN:1365-8050