Sodium Borohydride Treatment to Prepare Manganese Oxides with Oxygen Vacancy Defects for Efficient Oxygen Reduction

Manganese oxides are often used as catalysts for oxygen reduction reactions due to their low price and high stability, and they have been extensively studied. However, the poor electrical conductivity and low intrinsic activity of manganese oxides restrict its application in oxygen reduction. In thi...

Full description

Bibliographic Details
Main Authors: Shuo Sun, Haoran Yu, Lanlan Li, Xiaofei Yu, Xinghua Zhang, Zunming Lu, Xiaojing Yang
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/12/7/1059
Description
Summary:Manganese oxides are often used as catalysts for oxygen reduction reactions due to their low price and high stability, and they have been extensively studied. However, the poor electrical conductivity and low intrinsic activity of manganese oxides restrict its application in oxygen reduction. In this paper, the manganese oxide octahedral molecular sieve is used as the research object, and the oxygen reduction performance of the material is adjusted by the surface reduction etching treatment of sodium borohydride. After being treated with 8 mmol/L sodium borohydride, the oxygen vacancy content of the manganese oxide octahedral molecular sieve was 26%. The manganese oxide octahedral molecular sieve showed the best performance, and its half-wave potential was 0.821 V. Tests show that the material has excellent electrical conductivity and high oxygen reduction kinetics. The generation of appropriate oxygen vacancies on the surface directly improves the chemical properties of the material surface, regulates the ratio of Mn<sup>3+</sup>/Mn<sup>4+</sup> on the surface of the nanorod, and increases the oxygen reduction adsorption sites on the surface of the material. On the other hand, the electrical conductivity of the material is adjusted to increase the electron transfer rate during the oxygen reduction process, thereby enhancing the oxygen reduction activity.
ISSN:2075-4701