Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion

Stick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To d...

Full description

Bibliographic Details
Main Authors: Jens Goldammer, Ansgar Büschges, Volker Dürr
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470933/?tool=EBI
_version_ 1797690814520885248
author Jens Goldammer
Ansgar Büschges
Volker Dürr
author_facet Jens Goldammer
Ansgar Büschges
Volker Dürr
author_sort Jens Goldammer
collection DOAJ
description Stick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To date, descending interneurons are largely unknown in stick insects. In particular, it is unclear whether the special role of the front legs in sensory-induced turning and reaching has a neuroanatomical correlate in terms of descending interneuron numbers. Here, we describe the population of descending interneurons with somata in the brain or gnathal ganglion in the stick insect Carausius morosus, providing a first map of soma cluster counts and locations. By comparison of interneuron populations with projections to the pro- and mesothoracic ganglia, we then estimate the fraction of descending interneurons that terminate in the prothoracic ganglion. With regard to short-latency, touch-mediated reach-to-grasp movements, we also locate likely sites of synaptic interactions between antennal proprioceptive afferents to the deutocerebrum and gnathal ganglion with descending or ascending interneuron fibres. To this end, we combine fluorescent dye stainings of thoracic connectives with stainings of antennal hair field sensilla. Backfills of neck connectives revealed up to 410 descending interneuron somata (brain: 205 in 19 clusters; gnathal ganglion: 205). In comparison, backfills of the prothorax-mesothorax connectives stained only up to 173 somata (brain: 83 in 16 clusters; gnathal ganglion: 90), suggesting that up to 60% of all descending interneurons may terminate in the prothoracic ganglion (estimated upper bound). Double stainings of connectives and antennal hair field sensilla revealed that ascending or descending fibres arborise in close proximity of afferent terminals in the deutocerebrum and in the middle part of the gnathal ganglia. We conclude that two cephalothoracic pathways may convey cues about antennal movement and pointing direction to thoracic motor centres via two synapses only.
first_indexed 2024-03-12T02:04:33Z
format Article
id doaj.art-c9d7c3762c0641e1ae48c637f692acc2
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-03-12T02:04:33Z
publishDate 2023-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-c9d7c3762c0641e1ae48c637f692acc22023-09-07T05:31:52ZengPublic Library of Science (PLoS)PLoS ONE1932-62032023-01-01188Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglionJens GoldammerAnsgar BüschgesVolker DürrStick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To date, descending interneurons are largely unknown in stick insects. In particular, it is unclear whether the special role of the front legs in sensory-induced turning and reaching has a neuroanatomical correlate in terms of descending interneuron numbers. Here, we describe the population of descending interneurons with somata in the brain or gnathal ganglion in the stick insect Carausius morosus, providing a first map of soma cluster counts and locations. By comparison of interneuron populations with projections to the pro- and mesothoracic ganglia, we then estimate the fraction of descending interneurons that terminate in the prothoracic ganglion. With regard to short-latency, touch-mediated reach-to-grasp movements, we also locate likely sites of synaptic interactions between antennal proprioceptive afferents to the deutocerebrum and gnathal ganglion with descending or ascending interneuron fibres. To this end, we combine fluorescent dye stainings of thoracic connectives with stainings of antennal hair field sensilla. Backfills of neck connectives revealed up to 410 descending interneuron somata (brain: 205 in 19 clusters; gnathal ganglion: 205). In comparison, backfills of the prothorax-mesothorax connectives stained only up to 173 somata (brain: 83 in 16 clusters; gnathal ganglion: 90), suggesting that up to 60% of all descending interneurons may terminate in the prothoracic ganglion (estimated upper bound). Double stainings of connectives and antennal hair field sensilla revealed that ascending or descending fibres arborise in close proximity of afferent terminals in the deutocerebrum and in the middle part of the gnathal ganglia. We conclude that two cephalothoracic pathways may convey cues about antennal movement and pointing direction to thoracic motor centres via two synapses only.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470933/?tool=EBI
spellingShingle Jens Goldammer
Ansgar Büschges
Volker Dürr
Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion
PLoS ONE
title Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion
title_full Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion
title_fullStr Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion
title_full_unstemmed Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion
title_short Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion
title_sort descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470933/?tool=EBI
work_keys_str_mv AT jensgoldammer descendinginterneuronsofthestickinsectconnectingbrainneuropileswiththeprothoracicganglion
AT ansgarbuschges descendinginterneuronsofthestickinsectconnectingbrainneuropileswiththeprothoracicganglion
AT volkerdurr descendinginterneuronsofthestickinsectconnectingbrainneuropileswiththeprothoracicganglion