Predicting the Impact of Climate Change on the Distribution of a Neglected Arboviruses Vector (<i>Armigeres subalbatus</i>) in China

The geographic boundaries of arboviruses continue to expand, posing a major health threat to millions of people around the world. This expansion is related to the availability of effective vectors and suitable habitats. <i>Armigeres subalbatus</i> (Coquillett, 1898), a common and neglect...

Full description

Bibliographic Details
Main Authors: Gang Wang, Dongjing Zhang, Jehangir Khan, Jiatian Guo, Qingdeng Feng, Yan Sun, Beiqing Li, Yu Wu, Zhongdao Wu, Xiaoying Zheng
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Tropical Medicine and Infectious Disease
Subjects:
Online Access:https://www.mdpi.com/2414-6366/7/12/431
Description
Summary:The geographic boundaries of arboviruses continue to expand, posing a major health threat to millions of people around the world. This expansion is related to the availability of effective vectors and suitable habitats. <i>Armigeres subalbatus</i> (Coquillett, 1898), a common and neglected species, is of increasing interest given its potential vector capacity for Zika virus. However, potential distribution patterns and the underlying driving factors of <i>Ar. subalbatus</i> remain unknown. In the current study, detailed maps of their potential distributions were developed under both the current as well as future climate change scenarios (SSP126 and SSP585) based on CMIP6 data, employing the MaxEnt model. The results showed that the distribution of the <i>Ar</i>. <i>subalbatus</i> was mainly affected by temperature. Mean diurnal range was the strongest predictor in shaping the distribution of <i>Ar</i>. <i>subalbatus,</i> with an 85.2% contribution rate. By the 2050s and 2070s, <i>Ar</i>. <i>subalbatus</i> will have a broader potential distribution across China. There are two suitable expansion types under climate change in the 2050s and 2070s. The first type is continuous distribution expansion, and the second type is sporadic distribution expansion. Our comprehensive analysis of <i>Ar</i>. <i>subalbatus</i>’s suitable distribution areas shifts under climate change and provides useful and insightful information for developing management strategies for future arboviruses.
ISSN:2414-6366