Sharp subcritical and critical L p $L^{p}$ Hardy inequalities on the sphere

Abstract We obtain sharp inequalities of Hardy type for functions in the Sobolev space W 1 , p $W^{1,p}$ on the unit sphere S n − 1 $\mathbb{S}^{n-1}$ in R n $\mathbb{R}^{n}$ . We achieve this in both the subcritical and critical cases. The method we use to show optimality takes into account all the...

Full description

Bibliographic Details
Main Author: Ahmed A. Abdelhakim
Format: Article
Language:English
Published: SpringerOpen 2022-07-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-022-02833-w
_version_ 1797863223193501696
author Ahmed A. Abdelhakim
author_facet Ahmed A. Abdelhakim
author_sort Ahmed A. Abdelhakim
collection DOAJ
description Abstract We obtain sharp inequalities of Hardy type for functions in the Sobolev space W 1 , p $W^{1,p}$ on the unit sphere S n − 1 $\mathbb{S}^{n-1}$ in R n $\mathbb{R}^{n}$ . We achieve this in both the subcritical and critical cases. The method we use to show optimality takes into account all the constants involved in our inequalities. We apply our results to obtain lower bounds for the the first eigenvalue of the p-Laplacian on the sphere.
first_indexed 2024-04-09T22:33:15Z
format Article
id doaj.art-c9f3acb9807e4d97add4d3c3d4219eda
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-04-09T22:33:15Z
publishDate 2022-07-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-c9f3acb9807e4d97add4d3c3d4219eda2023-03-22T12:40:23ZengSpringerOpenJournal of Inequalities and Applications1029-242X2022-07-012022112410.1186/s13660-022-02833-wSharp subcritical and critical L p $L^{p}$ Hardy inequalities on the sphereAhmed A. Abdelhakim0Department of Mathematics, College of Science and Arts in Unaizah, Qassim UniversityAbstract We obtain sharp inequalities of Hardy type for functions in the Sobolev space W 1 , p $W^{1,p}$ on the unit sphere S n − 1 $\mathbb{S}^{n-1}$ in R n $\mathbb{R}^{n}$ . We achieve this in both the subcritical and critical cases. The method we use to show optimality takes into account all the constants involved in our inequalities. We apply our results to obtain lower bounds for the the first eigenvalue of the p-Laplacian on the sphere.https://doi.org/10.1186/s13660-022-02833-wSobolev Space on manifoldsL p $L^{p}$ Hardy inequalitiesDensity agrumentUnit sphere
spellingShingle Ahmed A. Abdelhakim
Sharp subcritical and critical L p $L^{p}$ Hardy inequalities on the sphere
Journal of Inequalities and Applications
Sobolev Space on manifolds
L p $L^{p}$ Hardy inequalities
Density agrument
Unit sphere
title Sharp subcritical and critical L p $L^{p}$ Hardy inequalities on the sphere
title_full Sharp subcritical and critical L p $L^{p}$ Hardy inequalities on the sphere
title_fullStr Sharp subcritical and critical L p $L^{p}$ Hardy inequalities on the sphere
title_full_unstemmed Sharp subcritical and critical L p $L^{p}$ Hardy inequalities on the sphere
title_short Sharp subcritical and critical L p $L^{p}$ Hardy inequalities on the sphere
title_sort sharp subcritical and critical l p l p hardy inequalities on the sphere
topic Sobolev Space on manifolds
L p $L^{p}$ Hardy inequalities
Density agrument
Unit sphere
url https://doi.org/10.1186/s13660-022-02833-w
work_keys_str_mv AT ahmedaabdelhakim sharpsubcriticalandcriticallplphardyinequalitiesonthesphere