Dissipative Particle Dynamics Simulation Parameters and Interactions of A Hydrogel

In this work, we report a parameterization procedure to compute the parameters of a hydrogel consisting of a hydrophilic polymer and a cross-linker. The system is parameterized so that coarse-grained dissipative particle dynamics (DPD) simulations can be performed. Proper computation of the simulati...

Full description

Bibliographic Details
Main Author: Gökhan Kacar
Format: Article
Language:English
Published: Turkish Chemical Society 2017-10-01
Series:Journal of the Turkish Chemical Society, Section A: Chemistry
Subjects:
Online Access:http://dergipark.gov.tr/jotcsa/issue/31055/309646
Description
Summary:In this work, we report a parameterization procedure to compute the parameters of a hydrogel consisting of a hydrophilic polymer and a cross-linker. The system is parameterized so that coarse-grained dissipative particle dynamics (DPD) simulations can be performed. Proper computation of the simulation parameters is crucial in order to represent the inherent chemical nature of the hydrogel and to model the correct structure. The polymer is parameterized by considering different volumes for coarse-grained beads. Moreover, the hydrogen bond interactions should be represented and properly defined in the simulations. To that purpose, we use a recently introduced parameterization procedure that incorporates the attraction as a result of the hydrogen bond interactions between relevant beads. This paper serves as an example of how the realistic simulation parameters of a hydrophilic polymer can be straightforwardly computed by leading to a proper determination of the structure and properties. The computational background, the procedures and the results of the computation are reported and discussed in this paper.
ISSN:2149-0120