The role of coherence theory in attractor quantum neural networks

We investigate attractor quantum neural networks (aQNNs) within the framework of coherence theory. We show that: i) aQNNs are associated to non-coherence-generating quantum channels; ii) the depth of the network is given by the decohering power of the corresponding quantum map; and iii) the attracto...

Full description

Bibliographic Details
Main Authors: Carlo Marconi, Pau Colomer Saus, María García Díaz, Anna Sanpera
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2022-09-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2022-09-08-794/pdf/
Description
Summary:We investigate attractor quantum neural networks (aQNNs) within the framework of coherence theory. We show that: i) aQNNs are associated to non-coherence-generating quantum channels; ii) the depth of the network is given by the decohering power of the corresponding quantum map; and iii) the attractor associated to an arbitrary input state is the one minimizing their relative entropy. Further, we examine faulty aQNNs described by noisy quantum channels, derive their physical implementation and analyze under which conditions their performance can be enhanced by using entanglement or coherence as external resources.
ISSN:2521-327X