The Goursat problem for hyperbolic linear third order equations

The third order hyperbolic linear differential equation is considered in the non‐cylindrical domain of multidimensional Euclidean space. The equation operator is a composition of a differentiation operator of the first order and second order operator, which is hyperbolic with respect to the prescrib...

Full description

Bibliographic Details
Main Author: V. I. Korzyuk
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2001-12-01
Series:Mathematical Modelling and Analysis
Subjects:
-
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9913
_version_ 1818871560686010368
author V. I. Korzyuk
author_facet V. I. Korzyuk
author_sort V. I. Korzyuk
collection DOAJ
description The third order hyperbolic linear differential equation is considered in the non‐cylindrical domain of multidimensional Euclidean space. The equation operator is a composition of a differentiation operator of the first order and second order operator, which is hyperbolic with respect to the prescribed vector field. Apart from the equation, Goursat and Cauchy conditions are defined for an unknown function. Thus the boundary of the domain, where this hyperbolic equation is defined, consists of characteristic hypersurfaces, the hypersur‐faces, where Cauchy conditions are prescribed, and hypersurfaces with no conditions. For the mentioned problem the existence and uniqueness of the strong solution are proved using mollifying operators with a variable step and functional analysis methods on the base of the previously proved energy inequality. Trečios eilės tiesinių hiperbolinių lygčių Goursat uždavinys Santrauka Daugiamate Euklido erdves necilindrineje srityje nagrinejama trečios eiles tiesine hiper‐boline lygtis. Lygties operatorius yra pirmos eiles diferencialinio operatoriaus ir antros eiles operatoriaus, kuris yra hiperbolinis apibrežto vektorinio lauko atžvilgiu, kompozicija. Srities kontūra sudaro charakteristinis hiperpaviršius (jame formuojama Goursat salyga), hiperpaviršiaus, kuriame formuluojama Caushy salyga, ir laisvas nuo bet kokiu salygu hiperpaviršius. Naudojantis kintamojo žingsnio suvidurkinto operatoriaus bei funkcines analizes metodais, paremtais energetine nelygybe, irodytas šio uždavinio stipriojo sprendinio egzistavimas ir vienatis. First Published online: 14 Oct 2010
first_indexed 2024-12-19T12:24:52Z
format Article
id doaj.art-ca1cb357e8bf480380fc9b3ed77c2258
institution Directory Open Access Journal
issn 1392-6292
1648-3510
language English
last_indexed 2024-12-19T12:24:52Z
publishDate 2001-12-01
publisher Vilnius Gediminas Technical University
record_format Article
series Mathematical Modelling and Analysis
spelling doaj.art-ca1cb357e8bf480380fc9b3ed77c22582022-12-21T20:21:36ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102001-12-016210.3846/13926292.2001.9637166The Goursat problem for hyperbolic linear third order equationsV. I. Korzyuk0Belarusian State University , Skoryna Ave. 4, Minsk, 220050, Belarus; Institute of Mathematics , NAS of Belarus , Surganov St., 11, Minsk, 220072, BelarusThe third order hyperbolic linear differential equation is considered in the non‐cylindrical domain of multidimensional Euclidean space. The equation operator is a composition of a differentiation operator of the first order and second order operator, which is hyperbolic with respect to the prescribed vector field. Apart from the equation, Goursat and Cauchy conditions are defined for an unknown function. Thus the boundary of the domain, where this hyperbolic equation is defined, consists of characteristic hypersurfaces, the hypersur‐faces, where Cauchy conditions are prescribed, and hypersurfaces with no conditions. For the mentioned problem the existence and uniqueness of the strong solution are proved using mollifying operators with a variable step and functional analysis methods on the base of the previously proved energy inequality. Trečios eilės tiesinių hiperbolinių lygčių Goursat uždavinys Santrauka Daugiamate Euklido erdves necilindrineje srityje nagrinejama trečios eiles tiesine hiper‐boline lygtis. Lygties operatorius yra pirmos eiles diferencialinio operatoriaus ir antros eiles operatoriaus, kuris yra hiperbolinis apibrežto vektorinio lauko atžvilgiu, kompozicija. Srities kontūra sudaro charakteristinis hiperpaviršius (jame formuojama Goursat salyga), hiperpaviršiaus, kuriame formuluojama Caushy salyga, ir laisvas nuo bet kokiu salygu hiperpaviršius. Naudojantis kintamojo žingsnio suvidurkinto operatoriaus bei funkcines analizes metodais, paremtais energetine nelygybe, irodytas šio uždavinio stipriojo sprendinio egzistavimas ir vienatis. First Published online: 14 Oct 2010https://journals.vgtu.lt/index.php/MMA/article/view/9913-
spellingShingle V. I. Korzyuk
The Goursat problem for hyperbolic linear third order equations
Mathematical Modelling and Analysis
-
title The Goursat problem for hyperbolic linear third order equations
title_full The Goursat problem for hyperbolic linear third order equations
title_fullStr The Goursat problem for hyperbolic linear third order equations
title_full_unstemmed The Goursat problem for hyperbolic linear third order equations
title_short The Goursat problem for hyperbolic linear third order equations
title_sort goursat problem for hyperbolic linear third order equations
topic -
url https://journals.vgtu.lt/index.php/MMA/article/view/9913
work_keys_str_mv AT vikorzyuk thegoursatproblemforhyperboliclinearthirdorderequations
AT vikorzyuk goursatproblemforhyperboliclinearthirdorderequations