Electrical and Thermomechanical Co-Simulation Platform for NPP
In order to analyze the safety of nuclear power plants (NPP), interactions between thermomechanical and automation processes, the on-site electrical grid, and the off-site transmission system should be studied in detail. However, an initial survey of simulation tools used for the modelling and simul...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/14/4/939 |
_version_ | 1797411651788472320 |
---|---|
author | Poria Astero Pasi Laakso Seppo Hänninen Robert John Millar Matti Lehtonen |
author_facet | Poria Astero Pasi Laakso Seppo Hänninen Robert John Millar Matti Lehtonen |
author_sort | Poria Astero |
collection | DOAJ |
description | In order to analyze the safety of nuclear power plants (NPP), interactions between thermomechanical and automation processes, the on-site electrical grid, and the off-site transmission system should be studied in detail. However, an initial survey of simulation tools used for the modelling and simulation of NPP shows that existing simulation tools have some drawbacks in properly simulating the aforementioned interactions. In fact, they simulate detailed electrical power systems and thermomechanical systems but neglect the detailed interactions of the electrical system with thermomechanical and automation processes. To address this challenge, this paper develops an open-source co-simulation platform which connects Apros, a proprietary simulator of the thermomechanical and automation processes in NPP, to power system simulators. The proposed platform provides an opportunity to simulate both the electrical and thermomechanical systems of an NPP simultaneously, and study the interactions between them without neglecting any details. This detailed analysis can identify critical faults more accurately, and provides better support for probabilistic risk analyses (PRA) of NPP. To investigate the effectiveness of the proposed platform, detailed thermomechanical and electrical models of an NPP, located in Finland, are cosimulated. The preliminary results emphasize that neglecting the detailed interactions between domains of NPP may lead to inaccurate simulation results and may affect NPP safety. |
first_indexed | 2024-03-09T04:49:13Z |
format | Article |
id | doaj.art-ca2791218e6c406b901f435f73fdc2ee |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-09T04:49:13Z |
publishDate | 2021-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-ca2791218e6c406b901f435f73fdc2ee2023-12-03T13:12:49ZengMDPI AGEnergies1996-10732021-02-0114493910.3390/en14040939Electrical and Thermomechanical Co-Simulation Platform for NPPPoria Astero0Pasi Laakso1Seppo Hänninen2Robert John Millar3Matti Lehtonen4Smart Grids, VTT Technical Research Centre of Finland, FI02044 Espoo, FinlandSmart Grids, VTT Technical Research Centre of Finland, FI02044 Espoo, FinlandSmart Grids, VTT Technical Research Centre of Finland, FI02044 Espoo, FinlandElectr. Engin. and Autom. Dept. Aalto University, FI00076 Espoo, FinlandElectr. Engin. and Autom. Dept. Aalto University, FI00076 Espoo, FinlandIn order to analyze the safety of nuclear power plants (NPP), interactions between thermomechanical and automation processes, the on-site electrical grid, and the off-site transmission system should be studied in detail. However, an initial survey of simulation tools used for the modelling and simulation of NPP shows that existing simulation tools have some drawbacks in properly simulating the aforementioned interactions. In fact, they simulate detailed electrical power systems and thermomechanical systems but neglect the detailed interactions of the electrical system with thermomechanical and automation processes. To address this challenge, this paper develops an open-source co-simulation platform which connects Apros, a proprietary simulator of the thermomechanical and automation processes in NPP, to power system simulators. The proposed platform provides an opportunity to simulate both the electrical and thermomechanical systems of an NPP simultaneously, and study the interactions between them without neglecting any details. This detailed analysis can identify critical faults more accurately, and provides better support for probabilistic risk analyses (PRA) of NPP. To investigate the effectiveness of the proposed platform, detailed thermomechanical and electrical models of an NPP, located in Finland, are cosimulated. The preliminary results emphasize that neglecting the detailed interactions between domains of NPP may lead to inaccurate simulation results and may affect NPP safety.https://www.mdpi.com/1996-1073/14/4/939cosimulationelectrical systemthermomechanical systemnuclear power plant safety |
spellingShingle | Poria Astero Pasi Laakso Seppo Hänninen Robert John Millar Matti Lehtonen Electrical and Thermomechanical Co-Simulation Platform for NPP Energies cosimulation electrical system thermomechanical system nuclear power plant safety |
title | Electrical and Thermomechanical Co-Simulation Platform for NPP |
title_full | Electrical and Thermomechanical Co-Simulation Platform for NPP |
title_fullStr | Electrical and Thermomechanical Co-Simulation Platform for NPP |
title_full_unstemmed | Electrical and Thermomechanical Co-Simulation Platform for NPP |
title_short | Electrical and Thermomechanical Co-Simulation Platform for NPP |
title_sort | electrical and thermomechanical co simulation platform for npp |
topic | cosimulation electrical system thermomechanical system nuclear power plant safety |
url | https://www.mdpi.com/1996-1073/14/4/939 |
work_keys_str_mv | AT poriaastero electricalandthermomechanicalcosimulationplatformfornpp AT pasilaakso electricalandthermomechanicalcosimulationplatformfornpp AT seppohanninen electricalandthermomechanicalcosimulationplatformfornpp AT robertjohnmillar electricalandthermomechanicalcosimulationplatformfornpp AT mattilehtonen electricalandthermomechanicalcosimulationplatformfornpp |