A Novel Role for NUAK1 in Promoting Ovarian Cancer Metastasis through Regulation of Fibronectin Production in Spheroids

Epithelial ovarian cancer (EOC) has a unique mode of metastasis, where cells shed from the primary tumour, form aggregates called spheroids to evade anoikis, spread through the peritoneal cavity, and adhere to secondary sites. We previously showed that the master kinase Liver kinase B1 (LKB1) is req...

Full description

Bibliographic Details
Main Authors: Jamie Lee Fritz, Olga Collins, Parima Saxena, Adrian Buensuceso, Yudith Ramos Valdes, Kyle E. Francis, Kevin R. Brown, Brett Larsen, Karen Colwill, Anne-Claude Gingras, Robert Rottapel, Trevor G. Shepherd
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/12/5/1250
Description
Summary:Epithelial ovarian cancer (EOC) has a unique mode of metastasis, where cells shed from the primary tumour, form aggregates called spheroids to evade anoikis, spread through the peritoneal cavity, and adhere to secondary sites. We previously showed that the master kinase Liver kinase B1 (LKB1) is required for EOC spheroid viability and metastasis. We have identified novel (nua) kinase 1 (NUAK1) as a top candidate LKB1 substrate in EOC cells and spheroids using a multiplex inhibitor beads-mass spectrometry approach. We confirmed that LKB1 maintains NUAK1 phosphorylation and promotes its stabilization. We next investigated NUAK1 function in EOC cells. Ectopic NUAK1-overexpressing EOC cell lines had increased adhesion, whereas the reverse was seen in OVCAR8-<i>NUAK1</i>KO cells. In fact, cells with NUAK1 loss generate spheroids with reduced integrity, leading to increased cell death after long-term culture. Following transcriptome analysis, we identified reduced enrichment for cell interaction gene expression pathways in OVCAR8-<i>NUAK1</i>KO spheroids. In fact, the <i>FN1</i> gene, encoding fibronectin, exhibited a 745-fold decreased expression in <i>NUAK1</i>KO spheroids. Fibronectin expression was induced during native spheroid formation, yet this was completely lost in <i>NUAK1</i>KO spheroids. Co-incubation with soluble fibronectin restored the compact spheroid phenotype to OVCAR8-<i>NUAK1</i>KO cells. In a xenograft model of intraperitoneal metastasis, NUAK1 loss extended survival and reduced fibronectin expression in tumours. Thus, we have identified a new mechanism controlling EOC metastasis, through which LKB1-NUAK1 activity promotes spheroid formation and secondary tumours via fibronectin production.
ISSN:2072-6694