Separable algebras in multitensor C$ ^* $-categories are unitarizable

S. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C$ ^* $-category is unitarizable (i.e., isomorphic to a special C$ ^* $-Frobenius algebra). Building on this result, we extend it to the non-connected case by showing th...

Full description

Bibliographic Details
Main Authors: Luca Giorgetti, Wei Yuan, XuRui Zhao
Format: Article
Language:English
Published: AIMS Press 2024-03-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2024555?viewType=HTML
_version_ 1797219418710736896
author Luca Giorgetti
Wei Yuan
XuRui Zhao
author_facet Luca Giorgetti
Wei Yuan
XuRui Zhao
author_sort Luca Giorgetti
collection DOAJ
description S. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C$ ^* $-category is unitarizable (i.e., isomorphic to a special C$ ^* $-Frobenius algebra). Building on this result, we extend it to the non-connected case by showing that an algebra in a multitensor C$ ^* $-category is unitarizable if and only if it is separable.
first_indexed 2024-04-24T12:33:20Z
format Article
id doaj.art-ca400f0c684d4f31a7309c51ad343dae
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-24T12:33:20Z
publishDate 2024-03-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-ca400f0c684d4f31a7309c51ad343dae2024-04-08T01:29:27ZengAIMS PressAIMS Mathematics2473-69882024-03-0195113201133410.3934/math.2024555Separable algebras in multitensor C$ ^* $-categories are unitarizableLuca Giorgetti 0Wei Yuan1XuRui Zhao21. Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1, I-00133 Roma, Italy2. Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China 3. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China3. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaS. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C$ ^* $-category is unitarizable (i.e., isomorphic to a special C$ ^* $-Frobenius algebra). Building on this result, we extend it to the non-connected case by showing that an algebra in a multitensor C$ ^* $-category is unitarizable if and only if it is separable.https://www.aimspress.com/article/doi/10.3934/math.2024555?viewType=HTMLmultitensor c$ ^* $-categoryseparable algebraunitarily separable algebrac$ ^* $-frobenius algebraq-system
spellingShingle Luca Giorgetti
Wei Yuan
XuRui Zhao
Separable algebras in multitensor C$ ^* $-categories are unitarizable
AIMS Mathematics
multitensor c$ ^* $-category
separable algebra
unitarily separable algebra
c$ ^* $-frobenius algebra
q-system
title Separable algebras in multitensor C$ ^* $-categories are unitarizable
title_full Separable algebras in multitensor C$ ^* $-categories are unitarizable
title_fullStr Separable algebras in multitensor C$ ^* $-categories are unitarizable
title_full_unstemmed Separable algebras in multitensor C$ ^* $-categories are unitarizable
title_short Separable algebras in multitensor C$ ^* $-categories are unitarizable
title_sort separable algebras in multitensor c categories are unitarizable
topic multitensor c$ ^* $-category
separable algebra
unitarily separable algebra
c$ ^* $-frobenius algebra
q-system
url https://www.aimspress.com/article/doi/10.3934/math.2024555?viewType=HTML
work_keys_str_mv AT lucagiorgetti separablealgebrasinmultitensorccategoriesareunitarizable
AT weiyuan separablealgebrasinmultitensorccategoriesareunitarizable
AT xuruizhao separablealgebrasinmultitensorccategoriesareunitarizable