BASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic Nuclei

Accreting supermassive black holes (SMBHs) located at the centers of galaxies are typically surrounded by large quantities of gas and dust. The structure and evolution of this circumnuclear material can be studied at different wavelengths, from the submillimeter to the X-ray. Recent X-ray studies ha...

Full description

Bibliographic Details
Main Authors: C. Ricci, K. Ichikawa, M. Stalevski, T. Kawamuro, S. Yamada, Y. Ueda, R. Mushotzky, G. C. Privon, M. J. Koss, B. Trakhtenbrot, A. C. Fabian, L. C. Ho, D. Asmus, F. E. Bauer, C. S. Chang, K. K. Gupta, K. Oh, M. Powell, R. W. Pfeifle, A. Rojas, F. Ricci, M. J. Temple, Y. Toba, A. Tortosa, E. Treister, F. Harrison, D. Stern, C. M. Urry
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/ad0733
_version_ 1797435208139538432
author C. Ricci
K. Ichikawa
M. Stalevski
T. Kawamuro
S. Yamada
Y. Ueda
R. Mushotzky
G. C. Privon
M. J. Koss
B. Trakhtenbrot
A. C. Fabian
L. C. Ho
D. Asmus
F. E. Bauer
C. S. Chang
K. K. Gupta
K. Oh
M. Powell
R. W. Pfeifle
A. Rojas
F. Ricci
M. J. Temple
Y. Toba
A. Tortosa
E. Treister
F. Harrison
D. Stern
C. M. Urry
author_facet C. Ricci
K. Ichikawa
M. Stalevski
T. Kawamuro
S. Yamada
Y. Ueda
R. Mushotzky
G. C. Privon
M. J. Koss
B. Trakhtenbrot
A. C. Fabian
L. C. Ho
D. Asmus
F. E. Bauer
C. S. Chang
K. K. Gupta
K. Oh
M. Powell
R. W. Pfeifle
A. Rojas
F. Ricci
M. J. Temple
Y. Toba
A. Tortosa
E. Treister
F. Harrison
D. Stern
C. M. Urry
author_sort C. Ricci
collection DOAJ
description Accreting supermassive black holes (SMBHs) located at the centers of galaxies are typically surrounded by large quantities of gas and dust. The structure and evolution of this circumnuclear material can be studied at different wavelengths, from the submillimeter to the X-ray. Recent X-ray studies have shown that the covering factor of the obscuring material tends to decrease with increasing Eddington ratio, likely due to radiative feedback on dusty gas. Here we study a sample of 549 nearby ( z ≲ 0.1) hard X-ray (14–195 keV) selected nonblazar active galactic nuclei (AGN) and use the ratio between the AGN infrared and bolometric luminosity as a proxy of the covering factor. We find that, in agreement with what has been found by X-ray studies of the same sample, the covering factor decreases with increasing Eddington ratio. We also confirm previous findings that showed that obscured AGN typically have larger covering factors than unobscured sources. Finally, we find that the median covering factors of AGN located in different regions of the column density–Eddington ratio diagram are in good agreement with what would be expected from a radiation-regulated growth of SMBHs.
first_indexed 2024-03-09T10:43:55Z
format Article
id doaj.art-ca4031787cd847169b7fed36cbdd5618
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2024-03-09T10:43:55Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-ca4031787cd847169b7fed36cbdd56182023-12-01T11:50:34ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-0195912710.3847/1538-4357/ad0733BASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic NucleiC. Ricci0https://orcid.org/0000-0001-5231-2645K. Ichikawa1https://orcid.org/0000-0002-4377-903XM. Stalevski2https://orcid.org/0000-0001-5146-8330T. Kawamuro3https://orcid.org/0000-0002-6808-2052S. Yamada4https://orcid.org/0000-0002-9754-3081Y. Ueda5https://orcid.org/0000-0001-7821-6715R. Mushotzky6https://orcid.org/0000-0002-7962-5446G. C. Privon7https://orcid.org/0000-0003-3474-1125M. J. Koss8https://orcid.org/0000-0002-7998-9581B. Trakhtenbrot9https://orcid.org/0000-0002-3683-7297A. C. Fabian10https://orcid.org/0000-0002-9378-4072L. C. Ho11https://orcid.org/0000-0001-6947-5846D. Asmus12F. E. Bauer13https://orcid.org/0000-0002-8686-8737C. S. Chang14https://orcid.org/0000-0001-9910-3234K. K. Gupta15https://orcid.org/0009-0007-9018-1077K. Oh16https://orcid.org/0000-0002-5037-951XM. Powell17https://orcid.org/0000-0003-2284-8603R. W. Pfeifle18https://orcid.org/0000-0001-8640-8522A. Rojas19https://orcid.org/0000-0003-0006-8681F. Ricci20https://orcid.org/0000-0001-5742-5980M. J. Temple21https://orcid.org/0000-0001-8433-550XY. Toba22https://orcid.org/0000-0002-3531-7863A. Tortosa23https://orcid.org/0000-0003-3450-6483E. Treister24https://orcid.org/0000-0001-7568-6412F. Harrison25D. Stern26https://orcid.org/0000-0003-2686-9241C. M. Urry27https://orcid.org/0000-0002-0745-9792Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales , Avenida Ejercito Libertador 441, Santiago, Chile claudio.ricci@mail.udp.cl; Kavli Institute for Astronomy and Astrophysics, Peking University , Beijing 100871, People’s Republic of ChinaFrontier Research Institute for Interdisciplinary Sciences, Tohoku University , Sendai, 980-8578, JapanAstronomical Observatory , Volgina 7, 11060 Belgrade, Serbia; Sterrenkundig Observatorium, Universiteit Ghent , Krijgslaan 281 S9, B-9000 Ghent, BelgiumRIKEN Cluster for Pioneering Research , 2-1 Hirosawa, Wako, Saitama 351-0198, JapanRIKEN Cluster for Pioneering Research , 2-1 Hirosawa, Wako, Saitama 351-0198, JapanDepartment of Astronomy, Kyoto University , Kitashirakawa -Oiwake-cho, Sakyo-ku, Kyoto 606-8502, JapanDepartment of Astronomy, University of Maryland , College Park, MD 20742, USA; Joint Space-Science Institute, University of Maryland , College Park, MD 20742, USANational Radio Astronomy Observatory , 520 Edgemont Road, Charlottesville, VA 22903, USA; Department of Astronomy, University of Florida , PO Box 112055, Gainesville, FL 32611, USAEureka Scientific , 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017, USA; Space Science Institute , 4750 Walnut Street, Suite 205, Boulder, CO 80301, USASchool of Physics and Astronomy, Tel Aviv University , Tel Aviv 69978, IsraelInstitute of Astronomy , Madingley Road, Cambridge CB3 0HA, UKKavli Institute for Astronomy and Astrophysics, Peking University , Beijing 100871, People’s Republic of China; Department of Astronomy, School of Physics, Peking University , Beijing 100871, People’s Republic of ChinaDepartment of Physics & Astronomy, University of Southampton , Southampton, SO17 1BJ, UK; Gymnasium Schwarzenbek , D-21493 Schwarzenbek, GermanyInstituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile , Campus San Joaquin, Av. Vicuña Mackenna 4860, Macul Santiago, 7820436, Chile; Centro de Astroingeniería, Facultad de Física, Pontificia Universidad Católica de Chile , Campus San Joaquin, Av. Vicuña Mackenna 4860, Macul Santiago, 7820436, Chile; Millennium Institute of Astrophysics , Nuncio Monseñor Sótero Sanz 100, Of 104, Providencia, Santiago, ChileJoint ALMA Observatory , Avenida Alonso de Cordova 3107, Vitacura 7630355, Santiago, ChileSTAR Institute , Quartier Agora—Allée du six Août, 19c B-4000 Liège, BelgiumKorea Astronomy & Space Science institute , 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of KoreaKavli Institute for Particle Astrophysics and Cosmology, Stanford University , 452 Lomita Mall, Stanford, CA 94305, USA; Department of Physics, Stanford University , 382 Via Pueblo Mall, Stanford, CA 94305, USAX-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center , Code 662, Greenbelt, MD 20771, USA; Oak Ridge Associated Universities , NASA NPP Program, Oak Ridge, TN 37831, USAInstituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales , Avenida Ejercito Libertador 441, Santiago, Chile claudio.ricci@mail.udp.cl; Centro de Astronomía (CITEVA), Universidad de Antofagasta , Avenida Angamos 601, Antofagasta, ChileDipartimento di Matematica e Fisica, Universita Roma Tre , via della Vasca Navale 84, I-00146, Roma, ItalyInstituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales , Avenida Ejercito Libertador 441, Santiago, Chile claudio.ricci@mail.udp.clNational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; Academia Sinica Institute of Astronomy and Astrophysics , 11F Astronomy-Mathematics Building, AS/NTU, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; Research Center for Space and Cosmic Evolution, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, JapanINAF—Osservatorio Astronomico di Roma , via di Frascati 33, I-00078 Monte Porzio Catone, ItalyInstituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile , Campus San Joaquin, Av. Vicuña Mackenna 4860, Macul Santiago, 7820436, ChileCahill Center for Astronomy and Astrophysics, California Institute of Technology , Pasadena, CA 91125, USAJet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Drive, MS 169-224, Pasadena, CA 91109, USAYale Center for Astronomy & Astrophysics , Physics Department, PO Box 208120, New Haven, CT 06520-8120, USAAccreting supermassive black holes (SMBHs) located at the centers of galaxies are typically surrounded by large quantities of gas and dust. The structure and evolution of this circumnuclear material can be studied at different wavelengths, from the submillimeter to the X-ray. Recent X-ray studies have shown that the covering factor of the obscuring material tends to decrease with increasing Eddington ratio, likely due to radiative feedback on dusty gas. Here we study a sample of 549 nearby ( z ≲ 0.1) hard X-ray (14–195 keV) selected nonblazar active galactic nuclei (AGN) and use the ratio between the AGN infrared and bolometric luminosity as a proxy of the covering factor. We find that, in agreement with what has been found by X-ray studies of the same sample, the covering factor decreases with increasing Eddington ratio. We also confirm previous findings that showed that obscured AGN typically have larger covering factors than unobscured sources. Finally, we find that the median covering factors of AGN located in different regions of the column density–Eddington ratio diagram are in good agreement with what would be expected from a radiation-regulated growth of SMBHs.https://doi.org/10.3847/1538-4357/ad0733Active galaxiesSeyfert galaxiesInfrared photometryX-ray astronomyQuasars
spellingShingle C. Ricci
K. Ichikawa
M. Stalevski
T. Kawamuro
S. Yamada
Y. Ueda
R. Mushotzky
G. C. Privon
M. J. Koss
B. Trakhtenbrot
A. C. Fabian
L. C. Ho
D. Asmus
F. E. Bauer
C. S. Chang
K. K. Gupta
K. Oh
M. Powell
R. W. Pfeifle
A. Rojas
F. Ricci
M. J. Temple
Y. Toba
A. Tortosa
E. Treister
F. Harrison
D. Stern
C. M. Urry
BASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic Nuclei
The Astrophysical Journal
Active galaxies
Seyfert galaxies
Infrared photometry
X-ray astronomy
Quasars
title BASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic Nuclei
title_full BASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic Nuclei
title_fullStr BASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic Nuclei
title_full_unstemmed BASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic Nuclei
title_short BASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic Nuclei
title_sort bass xlii the relation between the covering factor of dusty gas and the eddington ratio in nearby active galactic nuclei
topic Active galaxies
Seyfert galaxies
Infrared photometry
X-ray astronomy
Quasars
url https://doi.org/10.3847/1538-4357/ad0733
work_keys_str_mv AT cricci bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT kichikawa bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT mstalevski bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT tkawamuro bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT syamada bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT yueda bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT rmushotzky bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT gcprivon bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT mjkoss bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT btrakhtenbrot bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT acfabian bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT lcho bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT dasmus bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT febauer bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT cschang bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT kkgupta bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT koh bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT mpowell bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT rwpfeifle bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT arojas bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT fricci bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT mjtemple bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT ytoba bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT atortosa bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT etreister bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT fharrison bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT dstern bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei
AT cmurry bassxliitherelationbetweenthecoveringfactorofdustygasandtheeddingtonratioinnearbyactivegalacticnuclei