Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth

We study the asymptotic behavior of radially symmetric solutions to the subcritical semilinear elliptic problem $$\displaylines{ -\Delta u = u^{\frac{N+2}{N-2}}/[\log(e+u)]^{\alpha}\quad \text{in } \Omega=B_R(0)\subset\mathbb{R}^N,\cr u>0,\quad \text{in } \Omega,\cr u=0,\quad \text{on }...

Full description

Bibliographic Details
Main Authors: Rosa Pardo, Arturo Sanjuan
Format: Article
Language:English
Published: Texas State University 2020-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2020/114/abstr.html
_version_ 1818617173759754240
author Rosa Pardo
Arturo Sanjuan
author_facet Rosa Pardo
Arturo Sanjuan
author_sort Rosa Pardo
collection DOAJ
description We study the asymptotic behavior of radially symmetric solutions to the subcritical semilinear elliptic problem $$\displaylines{ -\Delta u = u^{\frac{N+2}{N-2}}/[\log(e+u)]^{\alpha}\quad \text{in } \Omega=B_R(0)\subset\mathbb{R}^N,\cr u>0,\quad \text{in } \Omega,\cr u=0,\quad \text{on } \partial \Omega, }$$ as $\alpha\to 0^+$. Using asymptotic estimates, we prove that there exists an explicitly defined constant L(N,R)>0, only depending on N and R, such that $$ \limsup_{\alpha\to0^+} \frac{\alpha u_\alpha (0)^2} {[\log(e+u_\alpha (0))]^{1+\frac{\alpha(N+2)}{2}}} \leq L(N,R) \le 2^*\liminf_{\alpha\to0^+}\frac{\alpha u_\alpha (0)^2} {[\log(e+u_\alpha (0))]^{\frac{\alpha(N-4)}2}}. $$
first_indexed 2024-12-16T17:01:29Z
format Article
id doaj.art-ca578ee0eb6542ba9bf77de497193251
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-16T17:01:29Z
publishDate 2020-11-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-ca578ee0eb6542ba9bf77de4971932512022-12-21T22:23:44ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912020-11-012020114,117Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growthRosa Pardo0Arturo Sanjuan1 Univ. Complutense de Madrid, Madrid, Spain Univ. Distrital Francisco Jose de Caldas, Bogota, Colombia We study the asymptotic behavior of radially symmetric solutions to the subcritical semilinear elliptic problem $$\displaylines{ -\Delta u = u^{\frac{N+2}{N-2}}/[\log(e+u)]^{\alpha}\quad \text{in } \Omega=B_R(0)\subset\mathbb{R}^N,\cr u>0,\quad \text{in } \Omega,\cr u=0,\quad \text{on } \partial \Omega, }$$ as $\alpha\to 0^+$. Using asymptotic estimates, we prove that there exists an explicitly defined constant L(N,R)>0, only depending on N and R, such that $$ \limsup_{\alpha\to0^+} \frac{\alpha u_\alpha (0)^2} {[\log(e+u_\alpha (0))]^{1+\frac{\alpha(N+2)}{2}}} \leq L(N,R) \le 2^*\liminf_{\alpha\to0^+}\frac{\alpha u_\alpha (0)^2} {[\log(e+u_\alpha (0))]^{\frac{\alpha(N-4)}2}}. $$http://ejde.math.txstate.edu/Volumes/2020/114/abstr.htmla priori boundspositive solutionssemilinear elliptic equationsdirichlet boundary conditionsgrowth estimatessubcritical nonlinearites
spellingShingle Rosa Pardo
Arturo Sanjuan
Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
Electronic Journal of Differential Equations
a priori bounds
positive solutions
semilinear elliptic equations
dirichlet boundary conditions
growth estimates
subcritical nonlinearites
title Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
title_full Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
title_fullStr Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
title_full_unstemmed Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
title_short Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
title_sort asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
topic a priori bounds
positive solutions
semilinear elliptic equations
dirichlet boundary conditions
growth estimates
subcritical nonlinearites
url http://ejde.math.txstate.edu/Volumes/2020/114/abstr.html
work_keys_str_mv AT rosapardo asymptoticbehaviorofpositiveradialsolutionstoellipticequationsapproachingcriticalgrowth
AT arturosanjuan asymptoticbehaviorofpositiveradialsolutionstoellipticequationsapproachingcriticalgrowth