Performance and economic efficiency analysis of an integrated, outdoor fan-ventilated cooling device
Recently, the importance of mechanical facilities in charge of the safety and comfort of occupants in buildings has once again been highlighted in accordance with global social issues such as the spread of COVID-19. In response, various ventilation systems are being developed to improve indoor air q...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-03-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844023011349 |
_version_ | 1827972639679840256 |
---|---|
author | Ja-Kang Yang Hyun-Je Lee Sun-Hyo Park Young-Tae Chae Jong-Su Choi Doo-Yong Park |
author_facet | Ja-Kang Yang Hyun-Je Lee Sun-Hyo Park Young-Tae Chae Jong-Su Choi Doo-Yong Park |
author_sort | Ja-Kang Yang |
collection | DOAJ |
description | Recently, the importance of mechanical facilities in charge of the safety and comfort of occupants in buildings has once again been highlighted in accordance with global social issues such as the spread of COVID-19. In response, various ventilation systems are being developed to improve indoor air quality, and efforts are being made to satisfy the indoor comfort of the occupants. Such advanced facilities allow occupants to secure indoor air quality, while frequent ventilation systems can affect the cooling and heating load in the building, and there is also a problem that it can occupy a relatively large amount of space in the building. This study proposes an integrated, outdoor fan-ventilated cooling device and analyzes its performance and economic efficiency. The EnergyPlus simulation program was used to model two types of systems for comparison: an existing (base) model with a condenser located in the outdoor unit, and a developed model with the condenser integrated within the cooling system. The state of the air passing through the condenser was analyzed prior to comparing the efficiency of the integrated, outdoor fan-ventilated cooling device, followed by an in-depth analysis of the performance and economic efficiency based on total energy consumption. In Case 1, the air passing through the cooling system was approximately 5 °C lower than the base model and showed 11% peak load reduction in comparison to the maximum energy consumption. Additionally, a comparison between regions with different outdoor air temperatures showed an average cost reduction of 16% in Daejeon and Busan City. |
first_indexed | 2024-04-09T19:24:55Z |
format | Article |
id | doaj.art-ca5c13bb75cc4e4db578657ffadddc2f |
institution | Directory Open Access Journal |
issn | 2405-8440 |
language | English |
last_indexed | 2024-04-09T19:24:55Z |
publishDate | 2023-03-01 |
publisher | Elsevier |
record_format | Article |
series | Heliyon |
spelling | doaj.art-ca5c13bb75cc4e4db578657ffadddc2f2023-04-05T08:19:20ZengElsevierHeliyon2405-84402023-03-0193e13927Performance and economic efficiency analysis of an integrated, outdoor fan-ventilated cooling deviceJa-Kang Yang0Hyun-Je Lee1Sun-Hyo Park2Young-Tae Chae3Jong-Su Choi4Doo-Yong Park5Korea Research Institute of Mechanical Facilities Industry, South KoreaResearch Institute, WooWon M&E Inc, South KoreaSustainable Architecture Institute, South KoreaDepartment of Architectural Engineering, Gachon University, South KoreaSoloenc, South KoreaBuilding Energy Research Center, KCL (Korea Conformity Laboratories), South Korea; Corresponding author.Recently, the importance of mechanical facilities in charge of the safety and comfort of occupants in buildings has once again been highlighted in accordance with global social issues such as the spread of COVID-19. In response, various ventilation systems are being developed to improve indoor air quality, and efforts are being made to satisfy the indoor comfort of the occupants. Such advanced facilities allow occupants to secure indoor air quality, while frequent ventilation systems can affect the cooling and heating load in the building, and there is also a problem that it can occupy a relatively large amount of space in the building. This study proposes an integrated, outdoor fan-ventilated cooling device and analyzes its performance and economic efficiency. The EnergyPlus simulation program was used to model two types of systems for comparison: an existing (base) model with a condenser located in the outdoor unit, and a developed model with the condenser integrated within the cooling system. The state of the air passing through the condenser was analyzed prior to comparing the efficiency of the integrated, outdoor fan-ventilated cooling device, followed by an in-depth analysis of the performance and economic efficiency based on total energy consumption. In Case 1, the air passing through the cooling system was approximately 5 °C lower than the base model and showed 11% peak load reduction in comparison to the maximum energy consumption. Additionally, a comparison between regions with different outdoor air temperatures showed an average cost reduction of 16% in Daejeon and Busan City.http://www.sciencedirect.com/science/article/pii/S2405844023011349Cooling efficiencyLoad reductionCondenserEnergy consumptionEnergyPlusEconomic efficiency |
spellingShingle | Ja-Kang Yang Hyun-Je Lee Sun-Hyo Park Young-Tae Chae Jong-Su Choi Doo-Yong Park Performance and economic efficiency analysis of an integrated, outdoor fan-ventilated cooling device Heliyon Cooling efficiency Load reduction Condenser Energy consumption EnergyPlus Economic efficiency |
title | Performance and economic efficiency analysis of an integrated, outdoor fan-ventilated cooling device |
title_full | Performance and economic efficiency analysis of an integrated, outdoor fan-ventilated cooling device |
title_fullStr | Performance and economic efficiency analysis of an integrated, outdoor fan-ventilated cooling device |
title_full_unstemmed | Performance and economic efficiency analysis of an integrated, outdoor fan-ventilated cooling device |
title_short | Performance and economic efficiency analysis of an integrated, outdoor fan-ventilated cooling device |
title_sort | performance and economic efficiency analysis of an integrated outdoor fan ventilated cooling device |
topic | Cooling efficiency Load reduction Condenser Energy consumption EnergyPlus Economic efficiency |
url | http://www.sciencedirect.com/science/article/pii/S2405844023011349 |
work_keys_str_mv | AT jakangyang performanceandeconomicefficiencyanalysisofanintegratedoutdoorfanventilatedcoolingdevice AT hyunjelee performanceandeconomicefficiencyanalysisofanintegratedoutdoorfanventilatedcoolingdevice AT sunhyopark performanceandeconomicefficiencyanalysisofanintegratedoutdoorfanventilatedcoolingdevice AT youngtaechae performanceandeconomicefficiencyanalysisofanintegratedoutdoorfanventilatedcoolingdevice AT jongsuchoi performanceandeconomicefficiencyanalysisofanintegratedoutdoorfanventilatedcoolingdevice AT dooyongpark performanceandeconomicefficiencyanalysisofanintegratedoutdoorfanventilatedcoolingdevice |