Potential use of only Yb2O3 in producing dense Si3N4 ceramics with high thermal conductivity by gas pressure sintering

Yb2O3 is an efficient sintering additive for enhancing not only thermal conductivity but also the high-temperature mechanical properties of Si3N4 ceramics. Here we report the fabrication of dense Si3N4 ceramics with high thermal conductivity by the gas pressure sintering of α-Si3N4 powder compacts,...

Full description

Bibliographic Details
Main Author: Xinwen Zhu, You Zhou, Kiyoshi Hirao, Takamasa Ishigaki and Yoshio Sakka
Format: Article
Language:English
Published: Taylor & Francis Group 2010-01-01
Series:Science and Technology of Advanced Materials
Online Access:http://iopscience.iop.org/1468-6996/11/6/065001
Description
Summary:Yb2O3 is an efficient sintering additive for enhancing not only thermal conductivity but also the high-temperature mechanical properties of Si3N4 ceramics. Here we report the fabrication of dense Si3N4 ceramics with high thermal conductivity by the gas pressure sintering of α-Si3N4 powder compacts, using only Yb2O3 as an additive, at 1900 °C under a nitrogen pressure of 1 MPa. The effects of Yb2O3 content, sample packing condition and sintering time on the densification, microstructure and thermal conductivity were investigated. Curves of the density plotted against the Yb2O3 content exhibited a characteristic 'N' shape with a local minimum at 3 mol% Yb2O3 and nearly complete densification below and above this concentration. The effects of the sample packing condition on the densification, microstructure and thermal conductivity strongly depended on the Yb2O3 content. The embedded condition led to more complete densification but also to a decrease in thermal conductivity from 119 to 94 W m-1 K−1 upon 1 mol% Yb2O3 addition. The sample packing condition had little effect on the density and thermal conductivity (102–106 W m−1 K−1) at 7 mol% Yb2O3. The thermal conductivity value was strongly related to the microstructure.
ISSN:1468-6996
1878-5514