Comparative Study Parallel Join Algorithms for MapReduce environment
There are the following techniques that are used to analyze massive amounts of data: MapReduce paradigm, parallel DBMSs, column-wise store, and various combinations of these approaches. We focus in a MapReduce environment. Unfortunately, join algorithms is not directly supported in MapReduce. The ai...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Ivannikov Institute for System Programming of the Russian Academy of Sciences
2018-10-01
|
Series: | Труды Института системного программирования РАН |
Subjects: | |
Online Access: | https://ispranproceedings.elpub.ru/jour/article/view/986 |
_version_ | 1818566490634321920 |
---|---|
author | A. Yu. Pigul |
author_facet | A. Yu. Pigul |
author_sort | A. Yu. Pigul |
collection | DOAJ |
description | There are the following techniques that are used to analyze massive amounts of data: MapReduce paradigm, parallel DBMSs, column-wise store, and various combinations of these approaches. We focus in a MapReduce environment. Unfortunately, join algorithms is not directly supported in MapReduce. The aim of this work is to generalize and compare existing equi-join algorithms with some optimization techniques. |
first_indexed | 2024-12-14T01:54:21Z |
format | Article |
id | doaj.art-ca6fcc80dd134d6fbd69bfe3fcf43701 |
institution | Directory Open Access Journal |
issn | 2079-8156 2220-6426 |
language | English |
last_indexed | 2024-12-14T01:54:21Z |
publishDate | 2018-10-01 |
publisher | Ivannikov Institute for System Programming of the Russian Academy of Sciences |
record_format | Article |
series | Труды Института системного программирования РАН |
spelling | doaj.art-ca6fcc80dd134d6fbd69bfe3fcf437012022-12-21T23:21:16ZengIvannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-0123010.15514/ISPRAS-2012-23-17986Comparative Study Parallel Join Algorithms for MapReduce environmentA. Yu. Pigul0Санкт-Петербургский государственный университетThere are the following techniques that are used to analyze massive amounts of data: MapReduce paradigm, parallel DBMSs, column-wise store, and various combinations of these approaches. We focus in a MapReduce environment. Unfortunately, join algorithms is not directly supported in MapReduce. The aim of this work is to generalize and compare existing equi-join algorithms with some optimization techniques.https://ispranproceedings.elpub.ru/jour/article/view/986параллельные алгоритмы соединения, mapreduce, оптимизация |
spellingShingle | A. Yu. Pigul Comparative Study Parallel Join Algorithms for MapReduce environment Труды Института системного программирования РАН параллельные алгоритмы соединения, mapreduce, оптимизация |
title | Comparative Study Parallel Join Algorithms for MapReduce environment |
title_full | Comparative Study Parallel Join Algorithms for MapReduce environment |
title_fullStr | Comparative Study Parallel Join Algorithms for MapReduce environment |
title_full_unstemmed | Comparative Study Parallel Join Algorithms for MapReduce environment |
title_short | Comparative Study Parallel Join Algorithms for MapReduce environment |
title_sort | comparative study parallel join algorithms for mapreduce environment |
topic | параллельные алгоритмы соединения, mapreduce, оптимизация |
url | https://ispranproceedings.elpub.ru/jour/article/view/986 |
work_keys_str_mv | AT ayupigul comparativestudyparalleljoinalgorithmsformapreduceenvironment |