Comparative Study Parallel Join Algorithms for MapReduce environment

There are the following techniques that are used to analyze massive amounts of data: MapReduce paradigm, parallel DBMSs, column-wise store, and various combinations of these approaches. We focus in a MapReduce environment. Unfortunately, join algorithms is not directly supported in MapReduce. The ai...

Full description

Bibliographic Details
Main Author: A. Yu. Pigul
Format: Article
Language:English
Published: Ivannikov Institute for System Programming of the Russian Academy of Sciences 2018-10-01
Series:Труды Института системного программирования РАН
Subjects:
Online Access:https://ispranproceedings.elpub.ru/jour/article/view/986
_version_ 1818566490634321920
author A. Yu. Pigul
author_facet A. Yu. Pigul
author_sort A. Yu. Pigul
collection DOAJ
description There are the following techniques that are used to analyze massive amounts of data: MapReduce paradigm, parallel DBMSs, column-wise store, and various combinations of these approaches. We focus in a MapReduce environment. Unfortunately, join algorithms is not directly supported in MapReduce. The aim of this work is to generalize and compare existing equi-join algorithms with some optimization techniques.
first_indexed 2024-12-14T01:54:21Z
format Article
id doaj.art-ca6fcc80dd134d6fbd69bfe3fcf43701
institution Directory Open Access Journal
issn 2079-8156
2220-6426
language English
last_indexed 2024-12-14T01:54:21Z
publishDate 2018-10-01
publisher Ivannikov Institute for System Programming of the Russian Academy of Sciences
record_format Article
series Труды Института системного программирования РАН
spelling doaj.art-ca6fcc80dd134d6fbd69bfe3fcf437012022-12-21T23:21:16ZengIvannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-0123010.15514/ISPRAS-2012-23-17986Comparative Study Parallel Join Algorithms for MapReduce environmentA. Yu. Pigul0Санкт-Петербургский государственный университетThere are the following techniques that are used to analyze massive amounts of data: MapReduce paradigm, parallel DBMSs, column-wise store, and various combinations of these approaches. We focus in a MapReduce environment. Unfortunately, join algorithms is not directly supported in MapReduce. The aim of this work is to generalize and compare existing equi-join algorithms with some optimization techniques.https://ispranproceedings.elpub.ru/jour/article/view/986параллельные алгоритмы соединения, mapreduce, оптимизация
spellingShingle A. Yu. Pigul
Comparative Study Parallel Join Algorithms for MapReduce environment
Труды Института системного программирования РАН
параллельные алгоритмы соединения, mapreduce, оптимизация
title Comparative Study Parallel Join Algorithms for MapReduce environment
title_full Comparative Study Parallel Join Algorithms for MapReduce environment
title_fullStr Comparative Study Parallel Join Algorithms for MapReduce environment
title_full_unstemmed Comparative Study Parallel Join Algorithms for MapReduce environment
title_short Comparative Study Parallel Join Algorithms for MapReduce environment
title_sort comparative study parallel join algorithms for mapreduce environment
topic параллельные алгоритмы соединения, mapreduce, оптимизация
url https://ispranproceedings.elpub.ru/jour/article/view/986
work_keys_str_mv AT ayupigul comparativestudyparalleljoinalgorithmsformapreduceenvironment