Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks
Sand shore ecosystems are extremely vulnerable to alien plant invasions. While most of the abiotic drivers of alien success have been identified, less is known on the role of biological processes driving the invasion. Studying the interactions between alien and native plant communities across differ...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-12-01
|
Series: | Ecological Indicators |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1470160X21011158 |
_version_ | 1819100190968119296 |
---|---|
author | Francesco Lami Stefano Vitti Lorenzo Marini Elisa Pellegrini Valentino Casolo Giacomo Trotta Maurizia Sigura Francesco Boscutti |
author_facet | Francesco Lami Stefano Vitti Lorenzo Marini Elisa Pellegrini Valentino Casolo Giacomo Trotta Maurizia Sigura Francesco Boscutti |
author_sort | Francesco Lami |
collection | DOAJ |
description | Sand shore ecosystems are extremely vulnerable to alien plant invasions. While most of the abiotic drivers of alien success have been identified, less is known on the role of biological processes driving the invasion. Studying the interactions between alien and native plant communities across different habitats and along the ecological succession (i.e. community maturity) can elucidate the dynamics of alien invasions in dune systems.In this study, we sampled alien and native plant communities in 100 patches across 10 natural coastal landscapes in NE Italy. The patches represented three main habitat types (foredune, backdune and salt marsh, which differ in terms of sea storm-related disturbance and soil salinity) distributed along a gradient of community maturity (i.e. number of years since the plant community was completely eroded by a sea storm). We analysed the effects of alien/native status, habitat type and maturity on species richness and colonization potential of plant species pools. Colonization potential was estimated by applying for the first time on plant data a species-habitat network approach, which allowed us to assess in detail the effect of each plant community on the others.In backdune habitats, alien plant species richness was negatively related with community maturity, which in turn had a positive effect on native species richness. Colonization potential was positively influenced by age for native communities and negatively for alien communities in salt marshes. Among habitat types, backdune patches were also particularly prone to alien invasions and very efficient donors of alien plants to other patches. Salt marshes were in general very resistant to invasion but potentially acting as secondary reservoirs for some backdune alien species.This study identified backdune habitats as key nodes for alien plant introduction and spread in coastal ecosystems, underlining the importance of maintaining mature undisturbed patches as a barrier to alien invasions. This information could prove pivotal in optimizing monitoring and management efforts of alien plant species in these ecosystems, as well as in conservation prioritization. |
first_indexed | 2024-12-22T00:58:51Z |
format | Article |
id | doaj.art-ca76464a69b4473c9c1575ef91cda20b |
institution | Directory Open Access Journal |
issn | 1470-160X |
language | English |
last_indexed | 2024-12-22T00:58:51Z |
publishDate | 2021-12-01 |
publisher | Elsevier |
record_format | Article |
series | Ecological Indicators |
spelling | doaj.art-ca76464a69b4473c9c1575ef91cda20b2022-12-21T18:44:15ZengElsevierEcological Indicators1470-160X2021-12-01133108450Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networksFrancesco Lami0Stefano Vitti1Lorenzo Marini2Elisa Pellegrini3Valentino Casolo4Giacomo Trotta5Maurizia Sigura6Francesco Boscutti7DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy; Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy; Corresponding author at: DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy.DI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy; Department of Life Sciences, University of Trieste, Trieste 34128, ItalyDAFNAE, University of Padova, Padova, Legnaro 35020, ItalyDI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy; Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, 2100 København Ø, DenmarkDI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, ItalyDI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, ItalyDI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, ItalyDI4A Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, ItalySand shore ecosystems are extremely vulnerable to alien plant invasions. While most of the abiotic drivers of alien success have been identified, less is known on the role of biological processes driving the invasion. Studying the interactions between alien and native plant communities across different habitats and along the ecological succession (i.e. community maturity) can elucidate the dynamics of alien invasions in dune systems.In this study, we sampled alien and native plant communities in 100 patches across 10 natural coastal landscapes in NE Italy. The patches represented three main habitat types (foredune, backdune and salt marsh, which differ in terms of sea storm-related disturbance and soil salinity) distributed along a gradient of community maturity (i.e. number of years since the plant community was completely eroded by a sea storm). We analysed the effects of alien/native status, habitat type and maturity on species richness and colonization potential of plant species pools. Colonization potential was estimated by applying for the first time on plant data a species-habitat network approach, which allowed us to assess in detail the effect of each plant community on the others.In backdune habitats, alien plant species richness was negatively related with community maturity, which in turn had a positive effect on native species richness. Colonization potential was positively influenced by age for native communities and negatively for alien communities in salt marshes. Among habitat types, backdune patches were also particularly prone to alien invasions and very efficient donors of alien plants to other patches. Salt marshes were in general very resistant to invasion but potentially acting as secondary reservoirs for some backdune alien species.This study identified backdune habitats as key nodes for alien plant introduction and spread in coastal ecosystems, underlining the importance of maintaining mature undisturbed patches as a barrier to alien invasions. This information could prove pivotal in optimizing monitoring and management efforts of alien plant species in these ecosystems, as well as in conservation prioritization.http://www.sciencedirect.com/science/article/pii/S1470160X21011158BackduneExotic speciesInvasion ecologyPlant successionSalt marshesSand dunes |
spellingShingle | Francesco Lami Stefano Vitti Lorenzo Marini Elisa Pellegrini Valentino Casolo Giacomo Trotta Maurizia Sigura Francesco Boscutti Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks Ecological Indicators Backdune Exotic species Invasion ecology Plant succession Salt marshes Sand dunes |
title | Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks |
title_full | Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks |
title_fullStr | Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks |
title_full_unstemmed | Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks |
title_short | Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks |
title_sort | habitat type and community age as barriers to alien plant invasions in coastal species habitat networks |
topic | Backdune Exotic species Invasion ecology Plant succession Salt marshes Sand dunes |
url | http://www.sciencedirect.com/science/article/pii/S1470160X21011158 |
work_keys_str_mv | AT francescolami habitattypeandcommunityageasbarrierstoalienplantinvasionsincoastalspecieshabitatnetworks AT stefanovitti habitattypeandcommunityageasbarrierstoalienplantinvasionsincoastalspecieshabitatnetworks AT lorenzomarini habitattypeandcommunityageasbarrierstoalienplantinvasionsincoastalspecieshabitatnetworks AT elisapellegrini habitattypeandcommunityageasbarrierstoalienplantinvasionsincoastalspecieshabitatnetworks AT valentinocasolo habitattypeandcommunityageasbarrierstoalienplantinvasionsincoastalspecieshabitatnetworks AT giacomotrotta habitattypeandcommunityageasbarrierstoalienplantinvasionsincoastalspecieshabitatnetworks AT mauriziasigura habitattypeandcommunityageasbarrierstoalienplantinvasionsincoastalspecieshabitatnetworks AT francescoboscutti habitattypeandcommunityageasbarrierstoalienplantinvasionsincoastalspecieshabitatnetworks |