New fixation approach for transverse metacarpal neck fracture: a biomechanical study

Abstract Background Fifth metacarpal neck fracture, also known as boxer’s fracture, is the most common metacarpal fracture. Percutaneous Kirschner-wire (K-wire) pinning has been shown to produce favorable clinical results. However, the fixation power of K-wires is a major concern. Plate fixation is...

Full description

Bibliographic Details
Main Authors: Yung-Cheng Chiu, Ming-Tzu Tsai, Cheng-En Hsu, Horng-Chaung Hsu, Heng-Li Huang, Jui-Ting Hsu
Format: Article
Language:English
Published: BMC 2018-07-01
Series:Journal of Orthopaedic Surgery and Research
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13018-018-0890-2
Description
Summary:Abstract Background Fifth metacarpal neck fracture, also known as boxer’s fracture, is the most common metacarpal fracture. Percutaneous Kirschner-wire (K-wire) pinning has been shown to produce favorable clinical results. However, the fixation power of K-wires is a major concern. Plate fixation is also a surgical option, but it has the disadvantages of tendon adhesion, requirement of secondary surgery for removal of the implant, and postoperative joint stiffness. A fixation method that causes little soft tissue damage and provides high biomechanical stability is required for patients with fifth metacarpal neck fracture for whom surgical intervention is indicated. The present study proposed fixation using K-wires and a cerclage wire to treat fifth metacarpal neck fracture. The fixation power of this new method was compared with that of K-wires alone and plates. Methods We used a saw blade to create transverse metacarpal neck fractures in 16 artificial metacarpal bone specimens, which were then treated with four types of fixation as follows: (1) locking plate with five locking bicortical screws (LP group), (2) regular plate with five bicortical screws (RP group), (3) two K-wires (K group), and (4) two K-wires and a figure-of-eight cerclage wire (KW group). The specimens were tested by using cantilever bending testing on a material testing system. The stiffness of the four fixation types was determined by observing force–displacement curves. Finally, the Kruskal–Wallis test was adopted to process the data, and the Mann–Whitney exact test was performed to conduct paired comparison between the fixation types. Results The fixation strength levels of the four fixation approaches for treating fifth metacarpal neck fracture were ranked in a descending order of LP group (24.6 ± 5.1 N/mm, median ± interquartile range) > RP group (22.2 ± 5.8 N/mm) ≅ KW group (20.1 ± 3.2 N/mm) > K group (16.9 ± 3.0 N/mm). Conclusion The fixation strength of two K-wires was significantly higher when reinforcement was provided using a figure-of-eight cerclage wire. The strength of the proposed approach is similar to that of a regular plate with five bicortical screws but weaker than that of a locking plate with the same amount of bicortical screws. Cerclage wire-integrated K-wires can be an alternative method that avoids the excessive soft tissue dissection required for plating in open reduction internal fixation for fifth metacarpal neck fracture.
ISSN:1749-799X