Summary: | In the paper the word-level n-grams based approach is proposed to find similarity between texts. The approach is a combination of two separate and independent techniques: self-organizing map (SOM) and text similarity measures. SOM’s uniqueness is that the obtained results of data clustering, as well as dimensionality reduction, are presented in a visual form. The four measures have been evaluated: cosine, dice, extended Jaccard’s, and overlap. First of all, texts have to be converted to numerical expression. For that purpose, the text has been split into the word-level n-grams and after that, the bag of n-grams has been created. The n-grams’ frequencies are calculated and the frequency matrix of dataset is formed. Various filters are used to create a bag of n-grams: stemming algorithms, number and punctuation removers, stop words, etc. All experimental investigation has been made using a corpus of plagiarized short answers dataset.
|