A Pair of Coupled Waveguides as a Classical Analogue for a Solid-State Qubit

We have determined conditions when a pair of coupled waveguides, a common element for integrated room-temperature photonics, can act as a qubit based on a system with a double-well potential. Moreover, we have used slow-varying amplitude approximation (SVA) for the “classical” wave equation to study...

Full description

Bibliographic Details
Main Authors: Andrey E. Schegolev, Nikolay V. Klenov, Anna V. Bogatskaya, Rustam D. Yusupov, Alexander M. Popov
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/21/8286
Description
Summary:We have determined conditions when a pair of coupled waveguides, a common element for integrated room-temperature photonics, can act as a qubit based on a system with a double-well potential. Moreover, we have used slow-varying amplitude approximation (SVA) for the “classical” wave equation to study the propagation of electromagnetic beams in a couple of dielectric waveguides both analytically and numerically. As a part of an extension of the optical-mechanical analogy, we have considered examples of “quantum operations” on the electromagnetic wave state in a pair of waveguides. Furthermore, we have provided examples of “quantum-mechanical” calculations of nonlinear transfer functions for the implementation of the considered element in optical neural networks.
ISSN:1424-8220