In silico structural and functional characterization of hypothetical proteins from Monkeypox virus
Abstract Background Monkeypox virus is a small, double-stranded DNA virus that causes a zoonotic disease called Monkeypox. The disease has spread from Central and West Africa to Europe and North America and created havoc in some countries all around the world. The complete genome of the Monkeypox vi...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-04-01
|
Series: | Journal of Genetic Engineering and Biotechnology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s43141-023-00505-w |
_version_ | 1827266845446504448 |
---|---|
author | Kajal Gupta |
author_facet | Kajal Gupta |
author_sort | Kajal Gupta |
collection | DOAJ |
description | Abstract Background Monkeypox virus is a small, double-stranded DNA virus that causes a zoonotic disease called Monkeypox. The disease has spread from Central and West Africa to Europe and North America and created havoc in some countries all around the world. The complete genome of the Monkeypox virus Zaire-96-I-16 has been sequenced. The viral strain contains 191 protein-coding genes with 30 hypothetical proteins whose structure and function are still unknown. Hence, it is imperative to functionally and structurally annotate the hypothetical proteins to get a clear understanding of novel drug and vaccine targets. The purpose of the study was to characterize the 30 hypothetical proteins through the determination of physicochemical properties, subcellular characterization, function prediction, functional domain prediction, structure prediction, structure validation, structural analysis, and ligand binding sites using Bioinformatics tools. Results The structural and functional analysis of 30 hypothetical proteins was carried out in this research. Out of these, 3 hypothetical functions (Q8V547, Q8V4S4, Q8V4Q4) could be assigned a structure and function confidently. Q8V547 protein in Monkeypox virus Zaire-96-I-16 is predicted as an apoptosis regulator which promotes viral replication in the infected host cell. Q8V4S4 is predicted as a nuclease responsible for viral evasion in the host. The function of Q8V4Q4 is to prevent host NF-kappa-B activation in response to pro-inflammatory cytokines like TNF alpha or interleukin 1 beta. Conclusions Out of the 30 hypothetical proteins of Monkeypox virus Zaire-96-I-16, 3 were annotated using various bioinformatics tools. These proteins function as apoptosis regulators, nuclease, and inhibitors of NF-Kappa-B activator. The functional and structural annotation of the proteins can be used to perform a docking with potential leads to discover novel drugs and vaccines against the Monkeypox. In vivo research can be carried out to identify the complete potential of the annotated proteins. |
first_indexed | 2024-04-09T14:00:25Z |
format | Article |
id | doaj.art-ca9bbaba34cf4c9ebcbb3bdea58590e0 |
institution | Directory Open Access Journal |
issn | 2090-5920 |
language | English |
last_indexed | 2025-03-22T04:24:19Z |
publishDate | 2023-04-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Genetic Engineering and Biotechnology |
spelling | doaj.art-ca9bbaba34cf4c9ebcbb3bdea58590e02024-04-28T06:18:29ZengElsevierJournal of Genetic Engineering and Biotechnology2090-59202023-04-012111810.1186/s43141-023-00505-wIn silico structural and functional characterization of hypothetical proteins from Monkeypox virusKajal Gupta0Department of Biochemistry, Daulat Ram College, University of DelhiAbstract Background Monkeypox virus is a small, double-stranded DNA virus that causes a zoonotic disease called Monkeypox. The disease has spread from Central and West Africa to Europe and North America and created havoc in some countries all around the world. The complete genome of the Monkeypox virus Zaire-96-I-16 has been sequenced. The viral strain contains 191 protein-coding genes with 30 hypothetical proteins whose structure and function are still unknown. Hence, it is imperative to functionally and structurally annotate the hypothetical proteins to get a clear understanding of novel drug and vaccine targets. The purpose of the study was to characterize the 30 hypothetical proteins through the determination of physicochemical properties, subcellular characterization, function prediction, functional domain prediction, structure prediction, structure validation, structural analysis, and ligand binding sites using Bioinformatics tools. Results The structural and functional analysis of 30 hypothetical proteins was carried out in this research. Out of these, 3 hypothetical functions (Q8V547, Q8V4S4, Q8V4Q4) could be assigned a structure and function confidently. Q8V547 protein in Monkeypox virus Zaire-96-I-16 is predicted as an apoptosis regulator which promotes viral replication in the infected host cell. Q8V4S4 is predicted as a nuclease responsible for viral evasion in the host. The function of Q8V4Q4 is to prevent host NF-kappa-B activation in response to pro-inflammatory cytokines like TNF alpha or interleukin 1 beta. Conclusions Out of the 30 hypothetical proteins of Monkeypox virus Zaire-96-I-16, 3 were annotated using various bioinformatics tools. These proteins function as apoptosis regulators, nuclease, and inhibitors of NF-Kappa-B activator. The functional and structural annotation of the proteins can be used to perform a docking with potential leads to discover novel drugs and vaccines against the Monkeypox. In vivo research can be carried out to identify the complete potential of the annotated proteins.https://doi.org/10.1186/s43141-023-00505-wMonkeypoxMonkeypox virusHypothetical proteinsBioinformatics analysisDrug target identification |
spellingShingle | Kajal Gupta In silico structural and functional characterization of hypothetical proteins from Monkeypox virus Journal of Genetic Engineering and Biotechnology Monkeypox Monkeypox virus Hypothetical proteins Bioinformatics analysis Drug target identification |
title | In silico structural and functional characterization of hypothetical proteins from Monkeypox virus |
title_full | In silico structural and functional characterization of hypothetical proteins from Monkeypox virus |
title_fullStr | In silico structural and functional characterization of hypothetical proteins from Monkeypox virus |
title_full_unstemmed | In silico structural and functional characterization of hypothetical proteins from Monkeypox virus |
title_short | In silico structural and functional characterization of hypothetical proteins from Monkeypox virus |
title_sort | in silico structural and functional characterization of hypothetical proteins from monkeypox virus |
topic | Monkeypox Monkeypox virus Hypothetical proteins Bioinformatics analysis Drug target identification |
url | https://doi.org/10.1186/s43141-023-00505-w |
work_keys_str_mv | AT kajalgupta insilicostructuralandfunctionalcharacterizationofhypotheticalproteinsfrommonkeypoxvirus |