Modeling and multi-objective optimization of polymer desiccant cooling system

The polymer desiccant cooling system (PDCS) efficiently reduces energy consumption compared to the vapor compression system (VCS). In this paper, a PDCS integrated heat pump is proposed. Experimental and simulation are used to analyze the performance of the PDCS. The control strategy is optimized wi...

Full description

Bibliographic Details
Main Authors: Hui Zhang, Zheng Qian, Zhicong Fang, Xuemei Zhang
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X23011772
Description
Summary:The polymer desiccant cooling system (PDCS) efficiently reduces energy consumption compared to the vapor compression system (VCS). In this paper, a PDCS integrated heat pump is proposed. Experimental and simulation are used to analyze the performance of the PDCS. The control strategy is optimized with the NSGA Ⅱ algorithm. A case study in Shanghai illustrates the practical application of the PDCS optimization strategy. The calculation results based on the thermal comfort requirement show the maximum energy consumption of optimized PDCS, routine PDCS, and VCS are 549.9 kW, 597.7 kW, and 1327.7 kW. About 62.7 % and 72.3 % of energy can be saved in routine PDCS and optimized PDCS compared to VCS. Moreover, the maximum moisture removal efficiency of the above scenarios is 10.67 kW/(g·s), 11.56 kW/(g·s), and 25.42 kW/(g·s), separately. Additionally, the maximum coefficient of performance is 0.530, 0.457, and 0.182, respectively.
ISSN:2214-157X