Analytic Functions Related to a Balloon-Shaped Domain

One of the fundamental parts of Geometric Function Theory is the study of analytic functions in different domains with critical geometrical interpretations. This article defines a new generalized domain obtained based on the quotient of two analytic functions. We derive various properties of the new...

Full description

Bibliographic Details
Main Authors: Adeel Ahmad, Jianhua Gong, Isra Al-Shbeil, Akhter Rasheed, Asad Ali, Saqib Hussain
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/12/865
_version_ 1827574791968653312
author Adeel Ahmad
Jianhua Gong
Isra Al-Shbeil
Akhter Rasheed
Asad Ali
Saqib Hussain
author_facet Adeel Ahmad
Jianhua Gong
Isra Al-Shbeil
Akhter Rasheed
Asad Ali
Saqib Hussain
author_sort Adeel Ahmad
collection DOAJ
description One of the fundamental parts of Geometric Function Theory is the study of analytic functions in different domains with critical geometrical interpretations. This article defines a new generalized domain obtained based on the quotient of two analytic functions. We derive various properties of the new class of normalized analytic functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">X</mi></semantics></math></inline-formula> defined in the new domain, including the sharp estimates for the coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>a</mi><mn>4</mn></msub></semantics></math></inline-formula>, and for three second-order and third-order Hankel determinants, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">H</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mi mathvariant="script">X</mi><mo>,</mo><msub><mi mathvariant="script">H</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mi mathvariant="script">X</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">H</mi><mrow><mn>3</mn><mo>,</mo><mn>1</mn></mrow></msub><mi mathvariant="script">X</mi></mrow></semantics></math></inline-formula>. The optimality of each obtained estimate is given as well.
first_indexed 2024-03-08T20:46:05Z
format Article
id doaj.art-caaa627807a3412090fdae75cf532b1c
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-08T20:46:05Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-caaa627807a3412090fdae75cf532b1c2023-12-22T14:10:00ZengMDPI AGFractal and Fractional2504-31102023-12-0171286510.3390/fractalfract7120865Analytic Functions Related to a Balloon-Shaped DomainAdeel Ahmad0Jianhua Gong1Isra Al-Shbeil2Akhter Rasheed3Asad Ali4Saqib Hussain5Department of Mathematics and Statistics, Hazara University Mansehra, Mansehra 21120, PakistanDepartment of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, United Arab EmiratesDepartment of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, JordanDepartment of Mathematics, COMSATS University Islamabad, Abbottabad 22060, PakistanDepartment of Mathematics and Statistics, Hazara University Mansehra, Mansehra 21120, PakistanDepartment of Mathematics, COMSATS University Islamabad, Abbottabad 22060, PakistanOne of the fundamental parts of Geometric Function Theory is the study of analytic functions in different domains with critical geometrical interpretations. This article defines a new generalized domain obtained based on the quotient of two analytic functions. We derive various properties of the new class of normalized analytic functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">X</mi></semantics></math></inline-formula> defined in the new domain, including the sharp estimates for the coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>a</mi><mn>4</mn></msub></semantics></math></inline-formula>, and for three second-order and third-order Hankel determinants, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">H</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mi mathvariant="script">X</mi><mo>,</mo><msub><mi mathvariant="script">H</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mi mathvariant="script">X</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">H</mi><mrow><mn>3</mn><mo>,</mo><mn>1</mn></mrow></msub><mi mathvariant="script">X</mi></mrow></semantics></math></inline-formula>. The optimality of each obtained estimate is given as well.https://www.mdpi.com/2504-3110/7/12/865analytic functionsubordinationsharp upper boundHankel determinantgeneralized domain
spellingShingle Adeel Ahmad
Jianhua Gong
Isra Al-Shbeil
Akhter Rasheed
Asad Ali
Saqib Hussain
Analytic Functions Related to a Balloon-Shaped Domain
Fractal and Fractional
analytic function
subordination
sharp upper bound
Hankel determinant
generalized domain
title Analytic Functions Related to a Balloon-Shaped Domain
title_full Analytic Functions Related to a Balloon-Shaped Domain
title_fullStr Analytic Functions Related to a Balloon-Shaped Domain
title_full_unstemmed Analytic Functions Related to a Balloon-Shaped Domain
title_short Analytic Functions Related to a Balloon-Shaped Domain
title_sort analytic functions related to a balloon shaped domain
topic analytic function
subordination
sharp upper bound
Hankel determinant
generalized domain
url https://www.mdpi.com/2504-3110/7/12/865
work_keys_str_mv AT adeelahmad analyticfunctionsrelatedtoaballoonshapeddomain
AT jianhuagong analyticfunctionsrelatedtoaballoonshapeddomain
AT israalshbeil analyticfunctionsrelatedtoaballoonshapeddomain
AT akhterrasheed analyticfunctionsrelatedtoaballoonshapeddomain
AT asadali analyticfunctionsrelatedtoaballoonshapeddomain
AT saqibhussain analyticfunctionsrelatedtoaballoonshapeddomain