NEGATIVE THEOREM FOR LP,0<P<1 MONOTONE APPROXIMATION

For a given nonnegative integer number n, we can find a monotone function f depending on n, defined on the interval I=[-1,1], and an absolute constant c>0, satisfying the following relationship: (2〖E_n (f Ì )〗_p)/(n+1)^3 ≤〖E_(n+1)^1 (f)〗_p≤c〖E_n (f Ì )〗_p, where 〖E_(n+1)^1 (f...

Full description

Bibliographic Details
Main Author: GHAZI ABDULLAH Madlol
Format: Article
Language:English
Published: Faculty of Computer Science and Mathematics, University of Kufa 2017-12-01
Series:Journal of Kufa for Mathematics and Computer
Subjects:
Online Access:https://journal.uokufa.edu.iq/index.php/jkmc/article/view/2102
Description
Summary:For a given nonnegative integer number n, we can find a monotone function f depending on n, defined on the interval I=[-1,1], and an absolute constant c>0, satisfying the following relationship: (2〖E_n (f Ì )〗_p)/(n+1)^3 ≤〖E_(n+1)^1 (f)〗_p≤c〖E_n (f Ì )〗_p, where 〖E_(n+1)^1 (f)〗_p is the degree of the best Lp monotone approximation of the function f by algebraic polynomial of degree not exceeding n+1. 〖E_n (f Ì )〗_p is the degree of the best Lp approximation of the function f Ì by algebraic polynomial of degree not exceeding n.
ISSN:2076-1171
2518-0010