Classifying Swahili Smishing Attacks for Mobile Money Users: A Machine-Learning Approach
Due to the massive adoption of mobile money in Sub-Saharan countries, the global transaction value of mobile money exceeded <inline-formula> <tex-math notation="LaTeX">$\$ $ </tex-math></inline-formula>2 billion in 2021. Projections show transaction values will exce...
Main Authors: | Iddi S. Mambina, Jema D. Ndibwile, Kisangiri F. Michael |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9849641/ |
Similar Items
-
Uncovering SMS Spam in Swahili Text Using Deep Learning Approaches
by: Iddi S. Mambina, et al.
Published: (2024-01-01) -
Mobile money in sub-Saharan Africa: Innovation and actors’ strategies
by: Sokhna Fatou Seck-Sarr
Published: (2024-03-01) -
Mobile Money and Banking Development in Sub-Saharan Africa
by: Jonathan Tembo
Published: (2023-12-01) -
SMSPROTECT: An automatic smishing detection mobile application
by: Oluwatobi Noah Akande, et al.
Published: (2023-04-01) -
SmiDCA: Smishing attack detection for mobile computing on smishing dataset
by: Hasan, Dahah Ahmed Haidarah
Published: (2019)