Kinetic equations and anisotropic hydrodynamics for quark and gluon fluids
The mixture of quark and gluon fluids is studied in a one-dimensional boostinvariant setup using the set of relativistic kinetic equations treated in the relaxation time approximation. Effects of a finite quark mass, non-zero baryon number density, and quantum statistics are discussed. Comparisons b...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://doi.org/10.1051/epjconf/201818202079 |
Summary: | The mixture of quark and gluon fluids is studied in a one-dimensional boostinvariant setup using the set of relativistic kinetic equations treated in the relaxation time approximation. Effects of a finite quark mass, non-zero baryon number density, and quantum statistics are discussed. Comparisons between the exact kinetic-theory results and anisotropic hydrodynamics predictions are performed and a very good agreement between the two are found. |
---|---|
ISSN: | 2100-014X |