Convolutional Neural Networks to Detect Vestibular Schwannomas on Single MRI Slices: A Feasibility Study
In this study. we aimed to detect vestibular schwannomas (VSs) in individual magnetic resonance imaging (MRI) slices by using a 2D-CNN. A pretrained CNN (ResNet-34) was retrained and internally validated using contrast-enhanced T1-weighted (T1c) MRI slices from one institution. In a second step, the...
Main Authors: | Carole Koechli, Erwin Vu, Philipp Sager, Lukas Näf, Tim Fischer, Paul M. Putora, Felix Ehret, Christoph Fürweger, Christina Schröder, Robert Förster, Daniel R. Zwahlen, Alexander Muacevic, Paul Windisch |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-04-01
|
Series: | Cancers |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-6694/14/9/2069 |
Similar Items
-
Convolutional Neural Networks for Classifying Laterality of Vestibular Schwannomas on Single MRI Slices—A Feasibility Study
by: Philipp Sager, et al.
Published: (2021-09-01) -
Longitudinal Changes of Quality of Life and Hearing Following Radiosurgery for Vestibular Schwannoma
by: Paul Windisch, et al.
Published: (2021-03-01) -
Diagnóstico por imágenes de Schwannoma vestibular
by: Xavier Delgado C., et al.
Published: (2022-09-01) -
Diagnóstico por imágenes de Schwannoma vestibular
by: Xavier Delgado C., et al.
Published: (2022-09-01) -
Machine Learning for the Detection and Segmentation of Benign Tumors of the Central Nervous System: A Systematic Review
by: Paul Windisch, et al.
Published: (2022-05-01)