An Upper Bound of the Third Hankel Determinant for a Subclass of <i>q</i>-Starlike Functions Associated with <i>k</i>-Fibonacci Numbers
In this paper, we use <i>q</i>-derivative operator to define a new class of <i>q</i>-starlike functions associated with <i>k</i>-Fibonacci numbers. This newly defined class is a subclass of class <inline-formula> <math display="inline"> <s...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-06-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/6/1043 |
Summary: | In this paper, we use <i>q</i>-derivative operator to define a new class of <i>q</i>-starlike functions associated with <i>k</i>-Fibonacci numbers. This newly defined class is a subclass of class <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">A</mi> </semantics> </math> </inline-formula> of normalized analytic functions, where class <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">A</mi> </semantics> </math> </inline-formula> is invariant (or symmetric) under rotations. For this function class we obtain an upper bound of the third Hankel determinant. |
---|---|
ISSN: | 2073-8994 |