An Upper Bound of the Third Hankel Determinant for a Subclass of <i>q</i>-Starlike Functions Associated with <i>k</i>-Fibonacci Numbers

In this paper, we use <i>q</i>-derivative operator to define a new class of <i>q</i>-starlike functions associated with <i>k</i>-Fibonacci numbers. This newly defined class is a subclass of class <inline-formula> <math display="inline"> <s...

Full description

Bibliographic Details
Main Authors: Muhammad Shafiq, Hari M. Srivastava, Nazar Khan, Qazi Zahoor Ahmad, Maslina Darus, Samiha Kiran
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/6/1043
Description
Summary:In this paper, we use <i>q</i>-derivative operator to define a new class of <i>q</i>-starlike functions associated with <i>k</i>-Fibonacci numbers. This newly defined class is a subclass of class <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">A</mi> </semantics> </math> </inline-formula> of normalized analytic functions, where class <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">A</mi> </semantics> </math> </inline-formula> is invariant (or symmetric) under rotations. For this function class we obtain an upper bound of the third Hankel determinant.
ISSN:2073-8994