Machine learning-based prediction of rheumatoid arthritis with development of ACPA autoantibodies in the presence of non-HLA genes polymorphisms.
Machine learning (ML) algorithms can handle complex genomic data and identify predictive patterns that may not be apparent through traditional statistical methods. They become popular tools for medical applications including prediction, diagnosis or treatment of complex diseases like rheumatoid arth...
Päätekijät: | Grzegorz Dudek, Sebastian Sakowski, Olga Brzezińska, Joanna Sarnik, Tomasz Budlewski, Grzegorz Dragan, Marta Poplawska, Tomasz Poplawski, Michał Bijak, Joanna Makowska |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
Public Library of Science (PLoS)
2024-01-01
|
Sarja: | PLoS ONE |
Linkit: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300717&type=printable |
Samankaltaisia teoksia
-
Clinical features of ACPA-negative and ACPA-positive variants of rheumatoid arthritis
Tekijä: D. A. Dibrov, et al.
Julkaistu: (2023-04-01) -
Tapering csDMARD or TNFi first: is the risk of flares different for ACPA-positive or ACPA-negative rheumatoid arthritis?
Tekijä: Annette H M van der Helm-van Mil, et al.
Julkaistu: (2024-08-01) -
ACPA Status Correlates with Differential Immune Profile in Patients with Rheumatoid Arthritis
Tekijä: Achilleas Floudas, et al.
Julkaistu: (2021-03-01) -
Immunophenotypic Landscape of synovial tissue in rheumatoid arthritis: Insights from ACPA status
Tekijä: JianBin Li, et al.
Julkaistu: (2024-07-01) -
Prediction of long-term drug-free outcomes in ACPA-positive and ACPA-negative rheumatoid arthritis by combined clinical and ultrasound assessment of residual disease: a 5-year prospective study
Tekijä: Carlomaurizio Montecucco, et al.
Julkaistu: (2025-01-01)