Machine learning-based prediction of rheumatoid arthritis with development of ACPA autoantibodies in the presence of non-HLA genes polymorphisms.

Machine learning (ML) algorithms can handle complex genomic data and identify predictive patterns that may not be apparent through traditional statistical methods. They become popular tools for medical applications including prediction, diagnosis or treatment of complex diseases like rheumatoid arth...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Grzegorz Dudek, Sebastian Sakowski, Olga Brzezińska, Joanna Sarnik, Tomasz Budlewski, Grzegorz Dragan, Marta Poplawska, Tomasz Poplawski, Michał Bijak, Joanna Makowska
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: Public Library of Science (PLoS) 2024-01-01
Sarja:PLoS ONE
Linkit:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300717&type=printable

Samankaltaisia teoksia