Spatial coherence modulation using plane waves generated with a digital micromirror device

Plane waves generated and alternated using a Digital Micromirror Device (DMD) were evaluated for modulating the spatial coherence of a laser beam. The spatial coherence and its modulation can be represented as a sampling problem in the temporal domain. In this way, the integration time in the detec...

Full description

Bibliographic Details
Main Authors: Nelson Correa, Maria Isabel Álvarez, Jorge Herrera-Ramírez
Format: Article
Language:English
Published: Universidad de Antioquia 2021-08-01
Series:Revista Facultad de Ingeniería Universidad de Antioquia
Subjects:
Online Access:https://revistas.udea.edu.co/index.php/ingenieria/article/view/339562
Description
Summary:Plane waves generated and alternated using a Digital Micromirror Device (DMD) were evaluated for modulating the spatial coherence of a laser beam. The spatial coherence and its modulation can be represented as a sampling problem in the temporal domain. In this way, the integration time in the detector, the frame rate of the DMD, and the laser coherence time were properly adjusted or chosen to achieve the effect of a beam with a particular state of spatial coherence. Two methods were applied to superpose the plane waves and produce controlled visibility variations in the interferogram of a Young’s experiment. The visibility measurements show the variation of the modulus of the complex degree of spatial coherence, controlled by simple phase modulation, and between a pair of points on the wavefront. This procedure, which uses no mobile parts, could be applied in digital holography denoising, beam shaping, optical communications and optical metrology and imaging.
ISSN:0120-6230
2422-2844