A Berry-Esseen type bound for the kernel density estimator based on a weakly dependent and randomly left truncated data

Abstract In many applications, the available data come from a sampling scheme that causes loss of information in terms of left truncation. In some cases, in addition to left truncation, the data are weakly dependent. In this paper we are interested in deriving the asymptotic normality as well as a B...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Petros Asghari, Vahid Fakoor
Định dạng: Bài viết
Ngôn ngữ:English
Được phát hành: SpringerOpen 2017-01-01
Loạt:Journal of Inequalities and Applications
Những chủ đề:
Truy cập trực tuyến:http://link.springer.com/article/10.1186/s13660-016-1272-0