Parenterally Administered Porcine Epidemic Diarrhea Virus-Like Particle-Based Vaccine Formulated with CCL25/28 Chemokines Induces Systemic and Mucosal Immune Protectivity in Pigs

Generation of a safe, economical, and effective vaccine capable of inducing mucosal immunity is critical for the development of vaccines against enteric viral diseases. In the current study, virus-like particles (VLPs) containing the spike (S), membrane (M), and envelope (E) structural proteins of p...

Full description

Bibliographic Details
Main Authors: Chin-Wei Hsu, Ming-Hao Chang, Hui-Wen Chang, Tzong-Yuan Wu, Yen-Chen Chang
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Viruses
Subjects:
Online Access:https://www.mdpi.com/1999-4915/12/10/1122
Description
Summary:Generation of a safe, economical, and effective vaccine capable of inducing mucosal immunity is critical for the development of vaccines against enteric viral diseases. In the current study, virus-like particles (VLPs) containing the spike (S), membrane (M), and envelope (E) structural proteins of porcine epidemic diarrhea virus (PEDV) expressed by the novel polycistronic baculovirus expression vector were generated. The immunogenicity and protective efficacy of the PEDV VLPs formulated with or without mucosal adjuvants of CCL25 and CCL28 (CCL25/28) were evaluated in post-weaning pigs. While pigs intramuscularly immunized with VLPs alone were capable of eliciting systemic anti-PEDV S-specific IgG and cellular immunity, co-administration of PEDV VLPs with CCL25/28 could further modulate the immune responses by enhancing systemic anti-PEDV S-specific IgG, mucosal IgA, and cellular immunity. Upon challenge with PEDV, both VLP-immunized groups showed milder clinical signs with reduced fecal viral shedding as compared to the control group. Furthermore, pigs immunized with VLPs adjuvanted with CCL25/28 showed superior immune protection against PEDV. Our results suggest that VLPs formulated with CCL25/28 may serve as a potential PEDV vaccine candidate and the same strategy may serve as a platform for the development of other enteric viral vaccines.
ISSN:1999-4915