SWAT analysis of Ikere Gorge basin for hydrokinetic power estimation in selected rural settlements of Oke Ogun, Nigeria
The issue of power generation is the bane of rural development. Power availability will not only raise standard of living but will also enhance people livelihood. This work examines the application of soil and water Assessment Tool (SWAT) in hydrological analysis of upper catchment of Ikere Gorge Ba...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Ruhuna
2017-06-01
|
Series: | Ruhuna Journal of Science |
Subjects: | |
Online Access: | http://rjs.ruh.ac.lk/index.php/rjs/article/view/133/168 |
Summary: | The issue of power generation is the bane of rural development. Power availability will not only raise standard of living but will also enhance people livelihood. This work examines the application of soil and water Assessment Tool (SWAT) in hydrological analysis of upper catchment of Ikere Gorge Basin for hydrokinetic energy estimation. The operation of hydrokinetic turbines depends on river flow and pressure head (∆H). SWATGIS system was used to determine the hydrological parameters of the sub-basins. SWAT is a version of ArcGIS Software. The result of the analysis was used to estimate the theoretical hydrokinetic power potential of the selected basins. The total theoretical hydrokinetic energy potential of the 10 basin selected was estimated as 36.4 MW. Potential hydrokinetic energy was computed using a theoretical procedure, assuming a head of 0.3 meters and a constant weight of water at 9800 n/m³. The hydrokinetic energy potential was highest in Oshe at Onikankan (9.542 MW) and lowest in Kojuoba at Olonje (0 MW). The SWAT software was later used to create Geo-database for each catchment of Hydrologic Response Unit (HURs) of the basin under study. A spatial structured query language (SSQL) was used to perform query analysis on the potential of the sites selected for hydrokinetic energy estimation.
Keywords. |
---|---|
ISSN: | 1800-279X 1800-279X |