A Novel Algebraic Structure of (<i>α</i>,<i>β</i>)-Complex Fuzzy Subgroups

A complex fuzzy set is a vigorous framework to characterize novel machine learning algorithms. This set is more suitable and flexible compared to fuzzy sets, intuitionistic fuzzy sets, and bipolar fuzzy sets. On the aspects of complex fuzzy sets, we initiate the abstraction of <inline-formula>...

Full description

Bibliographic Details
Main Authors: Hanan Alolaiyan, Halimah A. Alshehri, Muhammad Haris Mateen, Dragan Pamucar, Muhammad Gulzar
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/8/992
Description
Summary:A complex fuzzy set is a vigorous framework to characterize novel machine learning algorithms. This set is more suitable and flexible compared to fuzzy sets, intuitionistic fuzzy sets, and bipolar fuzzy sets. On the aspects of complex fuzzy sets, we initiate the abstraction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzy sets and then define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>α</mi><mo>,</mo><mi>β</mi></mfenced></semantics></math></inline-formula>-complex fuzzy subgroups. Furthermore, we prove that every complex fuzzy subgroup is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzy subgroup and define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzy normal subgroups of given group. We extend this ideology to define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzy cosets and analyze some of their algebraic characteristics. Furthermore, we prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzy normal subgroup is constant in the conjugate classes of group. We present an alternative conceptualization of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzy normal subgroup in the sense of the commutator of groups. We establish the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzy subgroup of the classical quotient group and show that the set of all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzy cosets of this specific complex fuzzy normal subgroup form a group. Additionally, we expound the index of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>α</mi><mo>,</mo><mi>β</mi></mfenced></semantics></math></inline-formula>-complex fuzzy subgroups and investigate the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></semantics></math></inline-formula>-complex fuzzification of Lagrange’s theorem analog to Lagrange’ theorem of classical group theory.
ISSN:1099-4300