A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem

We extend the weighted gradient estimate for solutions of nonlinear PDE associated to the prescribed $ k $-th $ L^p $-area measure problem to the case $ 0 < p < 1 $. The estimate yields non-collapsing estimate for symmetric convex bodied with prescribed $ L^p $-area measures.

Bibliographic Details
Main Author: Pengfei Guan
Format: Article
Language:English
Published: AIMS Press 2023-09-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mine.2023067?viewType=HTML
_version_ 1797659068475637760
author Pengfei Guan
author_facet Pengfei Guan
author_sort Pengfei Guan
collection DOAJ
description We extend the weighted gradient estimate for solutions of nonlinear PDE associated to the prescribed $ k $-th $ L^p $-area measure problem to the case $ 0 < p < 1 $. The estimate yields non-collapsing estimate for symmetric convex bodied with prescribed $ L^p $-area measures.
first_indexed 2024-03-11T18:08:38Z
format Article
id doaj.art-caef8b34902748fba2419d3f4fa71983
institution Directory Open Access Journal
issn 2640-3501
language English
last_indexed 2024-03-11T18:08:38Z
publishDate 2023-09-01
publisher AIMS Press
record_format Article
series Mathematics in Engineering
spelling doaj.art-caef8b34902748fba2419d3f4fa719832023-10-17T01:14:54ZengAIMS PressMathematics in Engineering2640-35012023-09-015311410.3934/mine.2023067A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problemPengfei Guan0Department of Mathematics and Statistics, McGill University, Montreal, H3A 0B9, CanadaWe extend the weighted gradient estimate for solutions of nonlinear PDE associated to the prescribed $ k $-th $ L^p $-area measure problem to the case $ 0 < p < 1 $. The estimate yields non-collapsing estimate for symmetric convex bodied with prescribed $ L^p $-area measures.https://www.aimspress.com/article/doi/10.3934/mine.2023067?viewType=HTMLarea measureschristoffel-minkowski problemconstant rank theorem
spellingShingle Pengfei Guan
A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem
Mathematics in Engineering
area measures
christoffel-minkowski problem
constant rank theorem
title A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem
title_full A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem
title_fullStr A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem
title_full_unstemmed A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem
title_short A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem
title_sort weighted gradient estimate for solutions of l p christoffel minkowski problem
topic area measures
christoffel-minkowski problem
constant rank theorem
url https://www.aimspress.com/article/doi/10.3934/mine.2023067?viewType=HTML
work_keys_str_mv AT pengfeiguan aweightedgradientestimateforsolutionsoflpchristoffelminkowskiproblem
AT pengfeiguan weightedgradientestimateforsolutionsoflpchristoffelminkowskiproblem