Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form

In this paper, exact solutions of semilinear equations having exponential growth in the space variable <i>x</i> are found. Semilinear Schrödinger equation with logarithmic nonlinearity and third-order evolution equations arising in optics with logarithmic and power-logarithmic nonlineari...

Full description

Bibliographic Details
Main Authors: Petar Popivanov, Angela Slavova
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/7/1003
_version_ 1827286789917769728
author Petar Popivanov
Angela Slavova
author_facet Petar Popivanov
Angela Slavova
author_sort Petar Popivanov
collection DOAJ
description In this paper, exact solutions of semilinear equations having exponential growth in the space variable <i>x</i> are found. Semilinear Schrödinger equation with logarithmic nonlinearity and third-order evolution equations arising in optics with logarithmic and power-logarithmic nonlinearities are investigated. In the parabolic case, the solution <i>u</i> is written as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mi>b</mi><msup><mi>e</mi><mrow><mo>−</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></semantics></math></inline-formula> being real-valued functions. We are looking for the solutions <i>u</i> of Schrödinger-type equation of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mi>b</mi><msup><mi>e</mi><mrow><mo>−</mo><mi>a</mi><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac></mrow></msup></mrow></semantics></math></inline-formula>, respectively, for the third-order PDE, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mi>A</mi><msup><mi>e</mi><mrow><mi>i</mi><mo>Φ</mo></mrow></msup></mrow></semantics></math></inline-formula>, where the amplitude <i>b</i> and the phase function <i>a</i> are complex-valued functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> is real-valued. In our proofs, the method of the first integral is used, not Hirota’s approach or the method of simplest equation.
first_indexed 2024-04-24T10:40:31Z
format Article
id doaj.art-cafef7683d5c4b6da12b1faa9ac21d2c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-04-24T10:40:31Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-cafef7683d5c4b6da12b1faa9ac21d2c2024-04-12T13:22:36ZengMDPI AGMathematics2227-73902024-03-01127100310.3390/math12071003Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral FormPetar Popivanov0Angela Slavova1Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, BulgariaInstitute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, BulgariaIn this paper, exact solutions of semilinear equations having exponential growth in the space variable <i>x</i> are found. Semilinear Schrödinger equation with logarithmic nonlinearity and third-order evolution equations arising in optics with logarithmic and power-logarithmic nonlinearities are investigated. In the parabolic case, the solution <i>u</i> is written as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mi>b</mi><msup><mi>e</mi><mrow><mo>−</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></semantics></math></inline-formula> being real-valued functions. We are looking for the solutions <i>u</i> of Schrödinger-type equation of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mi>b</mi><msup><mi>e</mi><mrow><mo>−</mo><mi>a</mi><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac></mrow></msup></mrow></semantics></math></inline-formula>, respectively, for the third-order PDE, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mi>A</mi><msup><mi>e</mi><mrow><mi>i</mi><mo>Φ</mo></mrow></msup></mrow></semantics></math></inline-formula>, where the amplitude <i>b</i> and the phase function <i>a</i> are complex-valued functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> is real-valued. In our proofs, the method of the first integral is used, not Hirota’s approach or the method of simplest equation.https://www.mdpi.com/2227-7390/12/7/1003semilinear parabolic equationsemilinear Schrödinger equationlogarithmic nonlinearityparabolic equations with solutions of exponential growthsolutions into explicit formspecial functions of Jacobi type
spellingShingle Petar Popivanov
Angela Slavova
Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form
Mathematics
semilinear parabolic equation
semilinear Schrödinger equation
logarithmic nonlinearity
parabolic equations with solutions of exponential growth
solutions into explicit form
special functions of Jacobi type
title Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form
title_full Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form
title_fullStr Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form
title_full_unstemmed Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form
title_short Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form
title_sort some non linear evolution equations and their explicit smooth solutions with exponential growth written into integral form
topic semilinear parabolic equation
semilinear Schrödinger equation
logarithmic nonlinearity
parabolic equations with solutions of exponential growth
solutions into explicit form
special functions of Jacobi type
url https://www.mdpi.com/2227-7390/12/7/1003
work_keys_str_mv AT petarpopivanov somenonlinearevolutionequationsandtheirexplicitsmoothsolutionswithexponentialgrowthwrittenintointegralform
AT angelaslavova somenonlinearevolutionequationsandtheirexplicitsmoothsolutionswithexponentialgrowthwrittenintointegralform