New Lyotropic Mixtures with Non-Chiral N-Acylamino Acid Surfactants Presenting the Biaxial Nematic Phase Investigated by Laser Conoscopy, Polarized Optical Microscopy and X-ray Diffraction

Amino acid-based surfactants were used as the main surfactants to prepare new lyotropic mixtures presenting three nematic phases. One of them is biaxial (NB), and the two others are uniaxial, discotic (ND) and calamitic (NC). These surfactants were the non-chiral molecules, potassium N-dodecanoyl-...

Full description

Bibliographic Details
Main Authors: Erol Akpinar, Dennys Reis, Muhammet Yildirim, Antônio Martins Figueiredo Neto
Format: Article
Language:English
Published: MDPI AG 2014-05-01
Series:Materials
Subjects:
Online Access:http://www.mdpi.com/1996-1944/7/6/4132
Description
Summary:Amino acid-based surfactants were used as the main surfactants to prepare new lyotropic mixtures presenting three nematic phases. One of them is biaxial (NB), and the two others are uniaxial, discotic (ND) and calamitic (NC). These surfactants were the non-chiral molecules, potassium N-dodecanoyl-DL-alaninate (DL-KDDA), potassium N-dodecanoyl-DL-serinate (DL-KDDS), disodium N-dodecanoyl-DL-aspartate (DL-NaDDAs) and potassium N-dodecanoyl-glycinate (KDDGly). Measurements of the optical birefringences and X-ray diffraction analysis were used to characterize the nematic phases and phase transitions. Mixtures with DL-KDDS exhibited the largest biaxial phase domain (~9 °C) with respect to the other mixtures in this study. The results obtained with the KDDGly mixture showed that the existence of hydrogen bonding between the head groups of the surfactant molecules seems to hinder the orientation of the micelles under the action of an external magnetic field.
ISSN:1996-1944