Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold Deposits

The effect of enrichment with Nd in sulfides from magmatic Cu-Ni-PGE complexes and sulfide ores from hydrothermal Pb-Zn, Au-Mo, and gold deposits was found and characterized. This paper concerns the report and analysis of isotopic geochemical data on the sulfide ores from the large Paleoproterozoic...

Full description

Bibliographic Details
Main Author: Pavel A. Serov
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/12/1634
_version_ 1797456176232792064
author Pavel A. Serov
author_facet Pavel A. Serov
author_sort Pavel A. Serov
collection DOAJ
description The effect of enrichment with Nd in sulfides from magmatic Cu-Ni-PGE complexes and sulfide ores from hydrothermal Pb-Zn, Au-Mo, and gold deposits was found and characterized. This paper concerns the report and analysis of isotopic geochemical data on the sulfide ores from the large Paleoproterozoic mafic–ultramafic magmatic Cu-Ni-PGE complexes of Fennoscandia and the literature data on sulfide ores from the Qingchengzi Pb-Zn deposit (northeastern China), Tokuzbay gold deposit (southern Altai, northwestern China), and Dahu Au-Mo deposit (central China). The mineral/rock partition coefficients for Nd and Sm (the D<sub>Nd</sub>/D<sub>Sm</sub> ratio) are defined as a prospective tool for the reconstruction of the sulfide mineral formation and geochemical substantiation of possible sources of ore-forming fluids for deposits of various genetic types. The observed selective Nd accumulation indicates either hydrothermal or metamorphic (metasomatic) impact, which is associated with increased Nd mobility and its migration or diffusion. Due to this process, there is a relative Nd accumulation in comparison with Sm and a consequent increase in the D<sub>Nd</sub>/D<sub>Sm</sub> ratio. At the isotopic system level, this leads to a sufficient decrease in the Sm/Nd ratio for the secondary sulfides of such kind. The revealed effect may serve as an isotopic geochemical marker of recent processes. These processes are quite frequently associated with the most important ore formation stages, which bear the commercially valuable concentrations of ore components. Sulfides from magmatic Cu-Ni-PGE complexes are more characterized by the selective accumulation of Nd in the sequential sulfide mineral formation. For sulfides from hydrothermal deposits, the effect of Nd enrichment is more intense and closely related to ore-forming fluids, under the influence of which sulfide mineralization is formed in multiple stages. The study aims at expanding the knowledge about fractionation and the behavior of lanthanides in ore-forming processes and allows the development of additional criteria for the evaluation of the ore potential of deposits with different geneses, ages, and formation conditions.
first_indexed 2024-03-09T16:03:37Z
format Article
id doaj.art-cb2e6056503a4533b9ca71171625329b
institution Directory Open Access Journal
issn 2075-163X
language English
last_indexed 2024-03-09T16:03:37Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Minerals
spelling doaj.art-cb2e6056503a4533b9ca71171625329b2023-11-24T16:53:07ZengMDPI AGMinerals2075-163X2022-12-011212163410.3390/min12121634Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold DepositsPavel A. Serov0Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, RussiaThe effect of enrichment with Nd in sulfides from magmatic Cu-Ni-PGE complexes and sulfide ores from hydrothermal Pb-Zn, Au-Mo, and gold deposits was found and characterized. This paper concerns the report and analysis of isotopic geochemical data on the sulfide ores from the large Paleoproterozoic mafic–ultramafic magmatic Cu-Ni-PGE complexes of Fennoscandia and the literature data on sulfide ores from the Qingchengzi Pb-Zn deposit (northeastern China), Tokuzbay gold deposit (southern Altai, northwestern China), and Dahu Au-Mo deposit (central China). The mineral/rock partition coefficients for Nd and Sm (the D<sub>Nd</sub>/D<sub>Sm</sub> ratio) are defined as a prospective tool for the reconstruction of the sulfide mineral formation and geochemical substantiation of possible sources of ore-forming fluids for deposits of various genetic types. The observed selective Nd accumulation indicates either hydrothermal or metamorphic (metasomatic) impact, which is associated with increased Nd mobility and its migration or diffusion. Due to this process, there is a relative Nd accumulation in comparison with Sm and a consequent increase in the D<sub>Nd</sub>/D<sub>Sm</sub> ratio. At the isotopic system level, this leads to a sufficient decrease in the Sm/Nd ratio for the secondary sulfides of such kind. The revealed effect may serve as an isotopic geochemical marker of recent processes. These processes are quite frequently associated with the most important ore formation stages, which bear the commercially valuable concentrations of ore components. Sulfides from magmatic Cu-Ni-PGE complexes are more characterized by the selective accumulation of Nd in the sequential sulfide mineral formation. For sulfides from hydrothermal deposits, the effect of Nd enrichment is more intense and closely related to ore-forming fluids, under the influence of which sulfide mineralization is formed in multiple stages. The study aims at expanding the knowledge about fractionation and the behavior of lanthanides in ore-forming processes and allows the development of additional criteria for the evaluation of the ore potential of deposits with different geneses, ages, and formation conditions.https://www.mdpi.com/2075-163X/12/12/1634sulfidesREE distributionsilicate inclusionsFennoscandian ShieldCu-Ni-PGE oresPb-Zn deposit
spellingShingle Pavel A. Serov
Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold Deposits
Minerals
sulfides
REE distribution
silicate inclusions
Fennoscandian Shield
Cu-Ni-PGE ores
Pb-Zn deposit
title Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold Deposits
title_full Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold Deposits
title_fullStr Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold Deposits
title_full_unstemmed Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold Deposits
title_short Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold Deposits
title_sort selective neodymium enrichment of sulfides as a fingerprint of late processes of ore formation insight into sm nd isotopes for sulfides from magmatic cu ni pge complexes and hydrothermal pb zn au mo and gold deposits
topic sulfides
REE distribution
silicate inclusions
Fennoscandian Shield
Cu-Ni-PGE ores
Pb-Zn deposit
url https://www.mdpi.com/2075-163X/12/12/1634
work_keys_str_mv AT pavelaserov selectiveneodymiumenrichmentofsulfidesasafingerprintoflateprocessesoforeformationinsightintosmndisotopesforsulfidesfrommagmaticcunipgecomplexesandhydrothermalpbznaumoandgolddeposits