Summary: | Abstract Thin films of the prototypical charge transfer insulator nickel oxide appear to be a promising material for novel nanoelectronic devices. The fabrication of the material is challenging, however, and mostly a p‐type semiconducting phase is reported. Here, the results of a factorial experiment are presented that allow optimization of the properties of thin films deposited using sputtering. A cluster analysis is performed, and four main types of films are found. Among them, the desired insulating phase is identified. From this material, nanoscale devices are fabricated, which demonstrate that the results carry over to relevant length scales. Initial switching results are reported.
|