Design and Test of a New Dielectric-Loaded Resonator for the Accurate Characterization of Conductive and Dielectric Materials

The spread of additive manufacturing techniques in the prototyping and realization of high-frequency applications renewed the interest in the characterization of the electromagnetic properties of both dielectric and conductive materials, as well as the design of new versatile measurement techniques....

Full description

Bibliographic Details
Main Authors: Andrea Alimenti, Kostiantyn Torokhtii, Pablo Vidal García, Nicola Pompeo, Enrico Silva
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/1/518
Description
Summary:The spread of additive manufacturing techniques in the prototyping and realization of high-frequency applications renewed the interest in the characterization of the electromagnetic properties of both dielectric and conductive materials, as well as the design of new versatile measurement techniques. In this framework, a new configuration of a dielectric-loaded resonator is presented. Its optimization, realization, and use are presented. A measurement repeatability of about one order of magnitude lower than the commonly found values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> on the <i>Q</i>-factor and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula> on the resonance frequency, given in terms of the relative standard deviations of repeated measurements) was reached thanks to the design of a closed resonator in which the samples can be loaded without disassembling the whole measurement fixture. The uncertainty levels, the ease of use, and the versatility of the realized system make its use of potential interest in numerous scenarios.
ISSN:1424-8220