Analytical SIR for Self-Organizing Wireless Networks
The signal to interference ratio (SIR) in the presence of multipath fading, shadowing and path loss is a valuable parameter for studying the capacity of a wireless system. This paper presents a new generalized path loss equation that takes into account the large-scale path loss as well as the small-...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | EURASIP Journal on Wireless Communications and Networking |
Online Access: | http://dx.doi.org/10.1155/2009/912018 |
Summary: | The signal to interference ratio (SIR) in the presence of multipath fading, shadowing and path loss is a valuable parameter for studying the capacity of a wireless system. This paper presents a new generalized path loss equation that takes into account the large-scale path loss as well as the small-scale multipath fading. The probability density function (pdf) of the SIR for self-organising wireless networks with Nakagami-m channel model is analytically derived using the new path loss equation. We chose the Nakagami-m channel fading model because it encompasses a large class of fading channels. The results presented show good agreement between the analytical and Monte Carlo- based methods. Furthermore, the pdf of the signal to interference plus noise ratio (SINR) is provided as an extension to the SIR derivation. The analytical derivation of the pdf for a single interferer in this paper lays a solid foundation to calculate the statistics for multiple interferers. |
---|---|
ISSN: | 1687-1472 1687-1499 |