Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>

Let <i>R</i> be a commutative ring with identity, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo><...

Full description

Bibliographic Details
Main Authors: Nadeem ur Rehman, Amal S. Alali, Shabir Ahmad Mir, Mohd Nazim
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/10/987
_version_ 1827721780865794048
author Nadeem ur Rehman
Amal S. Alali
Shabir Ahmad Mir
Mohd Nazim
author_facet Nadeem ur Rehman
Amal S. Alali
Shabir Ahmad Mir
Mohd Nazim
author_sort Nadeem ur Rehman
collection DOAJ
description Let <i>R</i> be a commutative ring with identity, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> be the set of zero-divisors of <i>R</i>. The weakly zero-divisor graph of <i>R</i> denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is an undirected (simple) graph with vertex set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>*</mo></msup></mrow></semantics></math></inline-formula>, and two distinct vertices <i>x</i> and <i>y</i> are adjacent, if and only if there exist <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>∈</mo><mi>a</mi><mi>n</mi><mi>n</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mi>a</mi><mi>n</mi><mi>n</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow></semantics></math></inline-formula>, such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>s</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Importantly, it is worth noting that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> contains the zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> as a subgraph. It is known that graph theory applications play crucial roles in different areas one of which is chemical graph theory that deals with the applications of graph theory to solve molecular problems. Analyzing Zagreb indices in chemical graph theory provides numerical descriptors for molecular structures, aiding in property prediction and drug design. These indices find applications in QSAR modeling and chemical informatics, contributing to efficient compound screening and optimization. They are essential tools for advancing pharmaceutical and material science research. This research article focuses on the basic properties of the weakly zero-divisor graph of the ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, where <i>p</i>, <i>t</i>, and <i>s</i> are prime numbers that may not necessarily be distinct and greater than 2. Moreover, this study includes the examination of various indices and coindices such as the first and second Zagreb indices and coindices, as well as the first and second multiplicative Zagreb indices and coindices of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T21:26:49Z
format Article
id doaj.art-cb6ef24ff7e9427e96707ae47e29e9af
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T21:26:49Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-cb6ef24ff7e9427e96707ae47e29e9af2023-11-19T15:38:52ZengMDPI AGAxioms2075-16802023-10-01121098710.3390/axioms12100987Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>Nadeem ur Rehman0Amal S. Alali1Shabir Ahmad Mir2Mohd Nazim3Department of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi ArabiaDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaSchool of Basic and Applied Sciences, Faculty of Science and Technology, JSPM University, Pune 412207, IndiaLet <i>R</i> be a commutative ring with identity, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> be the set of zero-divisors of <i>R</i>. The weakly zero-divisor graph of <i>R</i> denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is an undirected (simple) graph with vertex set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>*</mo></msup></mrow></semantics></math></inline-formula>, and two distinct vertices <i>x</i> and <i>y</i> are adjacent, if and only if there exist <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>∈</mo><mi>a</mi><mi>n</mi><mi>n</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mi>a</mi><mi>n</mi><mi>n</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow></semantics></math></inline-formula>, such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>s</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Importantly, it is worth noting that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>Γ</mo><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> contains the zero-divisor graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> as a subgraph. It is known that graph theory applications play crucial roles in different areas one of which is chemical graph theory that deals with the applications of graph theory to solve molecular problems. Analyzing Zagreb indices in chemical graph theory provides numerical descriptors for molecular structures, aiding in property prediction and drug design. These indices find applications in QSAR modeling and chemical informatics, contributing to efficient compound screening and optimization. They are essential tools for advancing pharmaceutical and material science research. This research article focuses on the basic properties of the weakly zero-divisor graph of the ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, where <i>p</i>, <i>t</i>, and <i>s</i> are prime numbers that may not necessarily be distinct and greater than 2. Moreover, this study includes the examination of various indices and coindices such as the first and second Zagreb indices and coindices, as well as the first and second multiplicative Zagreb indices and coindices of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">W</mi><mo>Γ</mo><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/12/10/987weakly zero-divisor graphtopological indicescommutative ringsgraph parameters
spellingShingle Nadeem ur Rehman
Amal S. Alali
Shabir Ahmad Mir
Mohd Nazim
Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>
Axioms
weakly zero-divisor graph
topological indices
commutative rings
graph parameters
title Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>
title_full Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>
title_fullStr Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>
title_full_unstemmed Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>
title_short Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>t</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula>
title_sort analysis of the zagreb indices over the weakly zero divisor graph of the ring inline formula math display inline semantics mrow msub mi mathvariant double struck z mi mi p mi msub mo mo msub mi mathvariant double struck z mi mi t mi msub mo mo msub mi mathvariant double struck z mi mi s mi msub mrow semantics math inline formula
topic weakly zero-divisor graph
topological indices
commutative rings
graph parameters
url https://www.mdpi.com/2075-1680/12/10/987
work_keys_str_mv AT nadeemurrehman analysisofthezagrebindicesovertheweaklyzerodivisorgraphoftheringinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckzmimipmimsubmomomsubmimathvariantdoublestruckzmimitmimsubmomomsubmimathvariantdoublestruckzmimismimsubmrowsemanticsmath
AT amalsalali analysisofthezagrebindicesovertheweaklyzerodivisorgraphoftheringinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckzmimipmimsubmomomsubmimathvariantdoublestruckzmimitmimsubmomomsubmimathvariantdoublestruckzmimismimsubmrowsemanticsmath
AT shabirahmadmir analysisofthezagrebindicesovertheweaklyzerodivisorgraphoftheringinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckzmimipmimsubmomomsubmimathvariantdoublestruckzmimitmimsubmomomsubmimathvariantdoublestruckzmimismimsubmrowsemanticsmath
AT mohdnazim analysisofthezagrebindicesovertheweaklyzerodivisorgraphoftheringinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckzmimipmimsubmomomsubmimathvariantdoublestruckzmimitmimsubmomomsubmimathvariantdoublestruckzmimismimsubmrowsemanticsmath