Summary: | The Maximum Satisfiability (Maximum Satisfiability (MaxSAT)) approach is the choice, and perhaps the only one, to deal with most real-world problems as most of them are unsatisfiable. Thus, the search for a complete and consistent solution to a real-world problem is impractical due to computational and time constraints. As a result, MaxSAT problems and solving techniques are of exceptional interest in the domain of Satisfiability (Satisfiability (SAT)). Our research experimentally investigated the performance gains of extending the most recently developed SAT dynamic Initial Weight assignment technique (InitWeight) to handle the MaxSAT problems. Specifically, we first investigated the performance gains of dynamically assigning the initial weights in the Divide and Distribute Fixed Weights solver (DDFW+Initial Weight for Maximum Satisfiability (DDFW+InitMaxSAT)) over Divide and Distribute Fixed Weights solver (DDFW) when applied to solve a wide range of well-known unweighted MaxSAT problems obtained from DIMACS. Secondly, we compared DDFW+InitMaxSAT’s performance against three known state-of-the-art SAT solving techniques: YalSAT, ProbSAT, and Sparrow. We showed that the assignment of dynamic initial weights increased the performance of DDFW+InitMaxSAT against DDFW by an order of magnitude on the majority of problems and performed similarly otherwise. Furthermore, we showed that the performance of DDFW+InitMaxSAT was superior to the other state-of-the-art algorithms. Eventually, we showed that the InitWeight technique could be extended to handling partial MaxSAT with minor modifications.
|