Topologies on <em>Z</em><sup>n</sup> that Are Not Homeomorphic to the <em>n</em>-Dimensional Khalimsky Topological Space

The present paper deals with two types of topologies on the set of integers, <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">Z</mi> </semantics> </math> </inline-formula>: a quasi-discrete topolo...

Full description

Bibliographic Details
Main Authors: Sang-Eon Han, Saeid Jafari, Jeong Min Kang
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/11/1072
_version_ 1818503735939170304
author Sang-Eon Han
Saeid Jafari
Jeong Min Kang
author_facet Sang-Eon Han
Saeid Jafari
Jeong Min Kang
author_sort Sang-Eon Han
collection DOAJ
description The present paper deals with two types of topologies on the set of integers, <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">Z</mi> </semantics> </math> </inline-formula>: a quasi-discrete topology and a topology satisfying the <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msub> </semantics> </math> </inline-formula>-separation axiom. Furthermore, for each <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula>, we develop countably many topologies on <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>n</mi> </msup> </semantics> </math> </inline-formula> which are not homeomorphic to the typical <i>n</i>-dimensional Khalimsky topological space. Based on these different types of new topological structures on <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>n</mi> </msup> </semantics> </math> </inline-formula>, many new mathematical approaches can be done in the fields of pure and applied sciences, such as fixed point theory, rough set theory, and so on.
first_indexed 2024-12-10T21:27:56Z
format Article
id doaj.art-cb8345719cb2452aab348e6f294fae2b
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-10T21:27:56Z
publishDate 2019-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-cb8345719cb2452aab348e6f294fae2b2022-12-22T01:32:56ZengMDPI AGMathematics2227-73902019-11-01711107210.3390/math7111072math7111072Topologies on <em>Z</em><sup>n</sup> that Are Not Homeomorphic to the <em>n</em>-Dimensional Khalimsky Topological SpaceSang-Eon Han0Saeid Jafari1Jeong Min Kang2Department of Mathematics Education, Institute of Pure and Applied Mathematics Jeonbuk National University, Jeonju-City 54896, Jeonbuk, KoreaCollege of Vestsjaelland South Herrestraede 114200 Slagelse, DenmarkMathematics, School of Liberal, Arts Education, University of Seoul, Seoul 02504, KoreaThe present paper deals with two types of topologies on the set of integers, <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">Z</mi> </semantics> </math> </inline-formula>: a quasi-discrete topology and a topology satisfying the <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msub> </semantics> </math> </inline-formula>-separation axiom. Furthermore, for each <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula>, we develop countably many topologies on <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>n</mi> </msup> </semantics> </math> </inline-formula> which are not homeomorphic to the typical <i>n</i>-dimensional Khalimsky topological space. Based on these different types of new topological structures on <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>n</mi> </msup> </semantics> </math> </inline-formula>, many new mathematical approaches can be done in the fields of pure and applied sciences, such as fixed point theory, rough set theory, and so on.https://www.mdpi.com/2227-7390/7/11/1072khalimsky topologyquasi-discrete (clopen or pseudo-discrete)t12-separation axiomalexandroff topologydigital topology
spellingShingle Sang-Eon Han
Saeid Jafari
Jeong Min Kang
Topologies on <em>Z</em><sup>n</sup> that Are Not Homeomorphic to the <em>n</em>-Dimensional Khalimsky Topological Space
Mathematics
khalimsky topology
quasi-discrete (clopen or pseudo-discrete)
t12-separation axiom
alexandroff topology
digital topology
title Topologies on <em>Z</em><sup>n</sup> that Are Not Homeomorphic to the <em>n</em>-Dimensional Khalimsky Topological Space
title_full Topologies on <em>Z</em><sup>n</sup> that Are Not Homeomorphic to the <em>n</em>-Dimensional Khalimsky Topological Space
title_fullStr Topologies on <em>Z</em><sup>n</sup> that Are Not Homeomorphic to the <em>n</em>-Dimensional Khalimsky Topological Space
title_full_unstemmed Topologies on <em>Z</em><sup>n</sup> that Are Not Homeomorphic to the <em>n</em>-Dimensional Khalimsky Topological Space
title_short Topologies on <em>Z</em><sup>n</sup> that Are Not Homeomorphic to the <em>n</em>-Dimensional Khalimsky Topological Space
title_sort topologies on em z em sup n sup that are not homeomorphic to the em n em dimensional khalimsky topological space
topic khalimsky topology
quasi-discrete (clopen or pseudo-discrete)
t12-separation axiom
alexandroff topology
digital topology
url https://www.mdpi.com/2227-7390/7/11/1072
work_keys_str_mv AT sangeonhan topologiesonemzemsupnsupthatarenothomeomorphictotheemnemdimensionalkhalimskytopologicalspace
AT saeidjafari topologiesonemzemsupnsupthatarenothomeomorphictotheemnemdimensionalkhalimskytopologicalspace
AT jeongminkang topologiesonemzemsupnsupthatarenothomeomorphictotheemnemdimensionalkhalimskytopologicalspace